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Abstract

The past two decades have seen the significant improvements
of the scalability of practical model counters, which have
been quite influential in many applications from artificial in-
telligence to formal verification. While most of exact counters
fall into two categories, search-based and compilation-based,
Huang and Darwiche’s remarkable observation ties these two
categories: the trace of a search-based exact model counter
corresponds to a Decision-DNNF formula (Huang and Dar-
wiche 2007). Taking advantage of literal equivalences, this
paper designs an efficient model counting technique such that
its trace is a generalization of Decision-DNNF. We first pro-
pose a generalization of Decision-DNNF, called CCDD, to
capture literal equivalences, then show that CCDD supports
model counting in linear time, and finally design a model
counter, called ExactMC, whose trace corresponds to CCDD.
We perform an extensive experimental evaluation over a com-
prehensive set of benchmarks and conduct performance com-
parison of ExactMC vis-a-vis the state of the art counters,
c2d, miniC2D, D4, ADDMC, and Ganak. Our empirical eval-
uation demonstrates ExactMC can solve 885 instances while
the prior state of the art could solve only 843 instances, rep-
resenting a significant improvement of 42 instances.

1 Introduction
Given a propositional formula ϕ, the problem of model
counting (#SAT), seeks to compute the number of satis-
fying assignments of ϕ. Model counting is a fundamental
problem with a wide variety of applications ranging from
probabilistic inference (Roth 1996; Chavira and Darwiche
2008), neural network verification (Baluta et al. 2019), net-
work reliability (Duenas-Osorio et al. 2017), computational
biology, and the like. Given the fundamental nature of the
problem, there has been a sustained investigation from theo-
reticians and practitioners alike over the past three decades.
Valiant (1979) showed that the problem of model counting
is #P-complete, which was subsequently followed by Toda’s
seminal work showing that PH ⊆ P#P (Toda 1989).

From the practitioner’s perspective, the earliest ap-
proaches to propositional model counting focused on ex-
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tensions of the DPLL framework via smarter enumeration
of partial solutions (Birnbaum and Lozinskii 1999). Subse-
quently, Bayardo and Pehoushek (2000) introduced the no-
tion of component caching to capture the observation that
if a formula ϕ can be partitioned into a subset of clauses,
called components, {C1, C2, . . . , Cn}, such that each of the
components is defined over a mutually exclusive set of vari-
ables, then the solutions of the ϕ is simply the product of
the solutions of the individual components Ci. Bayardo and
Pehsouhek (2000) observed that components reappear in dif-
ferent parts of the search space, and therefore, one can rely
on the caching of components to achieve efficiency. Since
the early 2000s, three major approaches to the design of
scalable model counters have emerged: (1) search-based, (2)
compilation-based, and (3) variable elimination-based meth-
ods.

The search-based techniques predominately focus on the
combination of component caching with Conflict Driven
clause learning, an idea that was pioneered by Sang et
al (2004; 2005), in their model counter Cachet. Subse-
quently, Thurley (2006) proposed improved component en-
coding schemes along with enhanced decision heuristics in
his model counter, sharpSAT. Recently, Sharma et al. (2019)
in their counter Ganak further improved upon sharpSAT via
probabilistic caching, improved decision heuristics aided by
the utilization of independent support.

The compilation-based techniques rely on the paradigm
of knowledge compilation, which focuses on the compila-
tion of models represented in an input language to a target
language such that the resulting target language supports the
desired range of queries such as model counting efficiently.
A target language of interest is deterministic Decomposable
Negation Normal Form (d-DNNF), which supports model
counting in polynomial time (in the compiled size). In prac-
tice, binary decision is an important property to impose de-
terminism in the design of a compiler (see e.g., D4 (Lagniez
and Marquis 2017)), and the resulting subset of d-DNNF
is called Decision-DNNF (Oztok and Darwiche 2014). The
state of the art model counters based on knowledge com-
pilation focus on compilation to Decision-DNNF and then
compute the model count.

Recently, variable elimination-based techniques have
been proposed that seek to combine the techniques of Bou-
quet’s method and bucket elimination with compact rep-



resentation offered by Algebraic Decision Diagrams, and
a scalable counter called ADDMC was implemented by
Dudek et al. (2020).

While the development of search-based model counters
and knowledge compilation techniques emerged indepen-
dently to a large extent, Huang and Darwiche’s remarkable
observation ties the two approaches (Huang and Darwiche
2007). In particular, they observed that the trace of a search-
based exact model counter corresponds to d-DNNF (in de-
tail, Decision-DNNF). Huang and Darwiche’s observation
motivated Muise et al. (2012) to design a state of the art
Decision-DNNF compiler based on the exact model counter,
sharpSAT. The starting point of our work is to investigate the
following natural question: Can we design an efficient model
counting technique such that its trace is a generalization of
Decision-DNNF?

The primary contribution of our work is an affirmative an-
swer to the above question. As a first step, we observe that
the widely employed restrictions, in the context of knowl-
edge compilation, on the internal nodes, decomposability,
and determinism, are not expressive enough to capture lit-
eral equivalences.

Indeed, pre-/in-processing techniques are an important
step in modern SAT solvers (Marques-Silva, Lynce, and Ma-
lik 2009). We then first propose a generalization of Decision-
DNNF, called CCDD, to capture literal equivalence, and
show that CCDD supports model counting in linear time.
Guided by our motivation, we now design a model counter,
called ExactMC, whose trace corresponds to CCDD. To em-
pirically measure the effectiveness of ExactMC, we perform
an extensive experimental evaluation over a comprehensive
set of benchmarks and conduct performance comparison of
ExactMC vis-a-vis the state of the art counters, c2d (Dar-
wiche 2004), miniC2D (Oztok and Darwiche 2015), D4
(Lagniez and Marquis 2017), ADDMC (Dudek, Phan, and
Vardi 2020), and Ganak (Sharma et al. 2019). Our empir-
ical evaluation demonstrates while the most number of in-
stances solved among the prior state of the art techniques
is 843 (Ganak), ExactMC solves 885, representing a signif-
icant improvement of 42 instances. Since the developments
in model counting techniques have demonstrated the signifi-
cance of engineering improvements, we believe that the sig-
nificant performance improvements of ExactMC open up di-
rections of future research in the improvement of decision
heuristics, caching schemes, and the like for counters whose
trace corresponds to CCDD.

The rest of the paper is organized as follows: We present
notations and preliminaries in Section 2. We introduce
CCDD in Section 3 to capture literal equivalence. In Sec-
tion 4, we present the model counter, ExactMC, whose trace
corresponds to CCDD. Next, we present detailed empirical
evaluation in Section 5. Finally, we conclude in Section 7.

2 Notations and Background
In a formula or the representations discussed, x denotes a
propositional variable, and literal l is a variable x or its
negation ¬x, where var(l) denotes the variable. PV =
{x0, x1, . . . , xn, . . .} denotes a set of propositional vari-
ables. A formula is constructed from constants true , false

and propositional variables using negation operator ¬, con-
junction operator ∧, disjunction operator ∨, and equality op-
erator↔. A clause C (resp. term T ) is a set of literals rep-
resenting their disjunction (resp. conjunction). A formula in
conjunctive normal form (CNF) is a set of clauses repre-
senting their conjunction. Given a formula ϕ, a variable x,
and a constant b, a substitution ϕ[x 7→ b] is a transformed
formula by replacing x by b in ϕ. An assignment ω over a
variable set X is a mapping from X to {true, false}. The
set of all assignments over X is denoted by 2X . A model
of ϕ is an assignment over Vars(ϕ) that satisfies ϕ; that
is, the substitution of ϕ on the model equals to true . Let
sol(ϕ) ⊆ 2X represent the set of models of ϕ, and ϕ |= ψ iff
sol(ϕ) ⊆ sol(ψ). Given a formula ϕ, the problem of model
counting is to compute |sol(ϕ)|.

Compilation In this work, we will concern ourselves with
the subsets of Negation Normal Form (NNF) wherein the
internal nodes are labeled with conjunction (∧) or disjunc-
tion (∨) while the leaf nodes are labeled with ⊥ (false), >
(true), or a literal. For a node v, let ϑ(v) and Vars(v) de-
note the formula represented by the DAG rooted at v, and the
variables that label the descendants of v, respectively. We
define the well-known decomposed conjunction (Darwiche
and Marquis 2002) as follows:
Definition 1. A conjunction node v is called a decomposed
conjunction if its children (also known as conjuncts of v) do
not share variables. That is, for each pair of children w and
w′ of v, we have Vars(w) ∩Vars(w′) = ∅.

If each conjunction node is decomposed, we say the for-
mula is in Decomposable NNF (DNNF) (Darwiche 2001).
DNNF does not support tractable model counting, but the
following subset does:
Definition 2. A disjunction node v is called deterministic if
each two disjuncts of v are logically contradictory. That is,
any two different children w and w′ of v satisfy that ϑ(w)∧
ϑ(w′) |= false.

If each disjunction node of a DNNF formula is deter-
ministic, we say the formula is in deterministic DNNF
(d-DNNF). Binary decision is a practical property to im-
pose determinism in the design of a compiler (see e.g.,
D4 (Lagniez and Marquis 2017)). Essentially, each decision
node with one variable x and two children is equivalent to
a disjunction node of the form (¬x ∧ ϕ) ∨ (x ∧ ψ), where
ϕ, ψ represent the formulas corresponding to the children.
If each disjunction node is a decision node, the formula is
in Decision-DNNF. Each Decision-DNNF formula satisfies
the read-once property: each decision variable appears at
most once on a path from the root to a leaf.

Search-Based Counters and Compilation As mentioned
in Section 1, we focus on the design of search-based model
counters. To this end, we first present the skeleton of a
general search-based model counter in Algorithm 1.1 The

1To improve readability, we slightly modified the fashion of cal-
culating the current count to be consistent with our ExactMC algo-
rithm. X is the set of variables in the original formula.



Algorithm 1: SearchCounter(ϕ)
1 if ϕ = false then return 0
2 if ϕ = true then return 2|X|

3 if Cache(ϕ) 6= nil then return Cache(ϕ)
4 Ψ← DECOMPOSE(ϕ)
5 if |Ψ| > 1 then
6 c←

∏
ψ∈Ψ SearchCounter(ψ)

7 return Cache(ϕ)← c

2(|Ψ|−1)·|X|

8 else
9 x← PICKGOODVAR(ϕ)

10 c0 ← SearchCounter(ϕ[x 7→ false])
11 c1 ← SearchCounter(ϕ[x 7→ true])

12 return Cache(ϕ)← c0+c1
2

13 end

algorithms often maintain a cache that stores the residual
sub-formulas along with their corresponding model count.
The component-based decomposition, represented in line 4,
seeks to partition the ϕ into sub-formulas, referred to as
components, such that each of the components is defined
over a mutually disjoint set of variables. Else, we pick a
variable in line 9 and recursively compute the exact model
count. Huang and Darwiche observed that the trace of the
execution of such a model counter could be viewed to corre-
spond to a Decision-DNNF, a negation normal form that has
been well studied in the knowledge compilation community.
In this context, it is worth emphasizing that Decision-DNNF
supports linear time model counting, which is reflected in
simple constant time computations in lines 7 and 12 during
each step of the recursions wherein every step of the recur-
sion would correspond to a node in Decision-DNNF captur-
ing the trace of the execution of SearchCounter.

Remark on Approximate Model Counting While this
work focuses on exact model counting, it is worth remarking
that there has been a long line of work in the design of effi-
cient hashing-based approximate model counters that seek to
provide (ε, δ)-guarantees (Stockmeyer 1983; Gomes, Sab-
harwal, and Selman 2006; Chakraborty, Meel, and Vardi
2013, 2016; Soos and Meel 2019; Soos, Gocht, and Meel
2020).

3 Capturing Literal Equivalences by CCDD

To seek an answer to the natural question of designing a
counter whose trace is a generalization of Decision-DNNF,
we first investigate appropriate generalizations of Decision-
DNNF. To this end, we turn to the literal equivalences, a
powerful technique in SAT solving, and we design a new
representation language that seeks to utilize literal equiva-
lences. We first discuss how to capture literal equivalence
from the knowledge compilation perspective, which is then
manifested into a corresponding new tractable language,
called CCDD. We finally show that CCDD supports linear
model counting, which serves as motivation for us to design
a counter whose trace corresponds to CCDD.

3.1 Capturing Literal Equivalences
Given two literals l and l′, we use l ↔ l′ to denote literal
equivalence of l and l′. Given a set of literal equivalences E,
let E′ = {l ↔ l′,¬l ↔ ¬l′ | l ↔ l′ ∈ E}; and then we de-
fine semantic closure of E, denoted by dEe, as equivalence
closure of E′. Now for every literal l under dEe, let [l] de-
note the equivalence class of l. GivenE, a unique equivalent
representation ofE, denoted by bEc and called prime literal
equivalences, is defined as follows:

bEc =
⋃

x∈PV ,min≺[x]=x

{x↔ l | l ∈ [x], l 6= x}

where min≺[x] is the minimum variable appearing in [x]
over the lexicographic order ≺. It can be shown that dEe =
dbEce.

Let ϕ be a formula and let E be a set of prime literal
equivalences implied by ϕ. We can obtain another formula
ϕ′ by performing a literal-substitution: replace each l (resp.
¬l) in ϕ with x (resp. ¬x) for each x ↔ l ∈ E. Note that,
ϕ ≡ ϕ′ ∧

∧
x↔l∈E x↔ l.

Example 1. Given E = {¬x1 ↔ x3,¬x4 ↔ x3,¬x2 ↔
¬x6, x5 ↔ x5}, we have bEc = {x1 ↔ ¬x3, x1 ↔
x4, x2 ↔ x6}. Given ϕ = (x1∨¬x3∨x4∨x7)∧ (x1∨x3∨
x5)∧ (¬x1 ↔ x3)∧ (¬x4 ↔ x3)∧ (¬x2 ↔ ¬x6)∧ (x5 ↔
x5), each literal equivalence in bEc is implied. We can
use bEc to perform a literal-substitution to simplify ϕ as
(x1 ∨ x7) ∧

∧
bEc.

We propose a new notion on conjunction nodes to repre-
sent literal equivalences:

Definition 3. A kernelized conjunction node v is a conjunc-
tion node consisting of a distinguished child, we call the core
child, denoted by chcore(v), and a set of remaining children
which define equivalences, denoted byChrem(v), such that:

1. Everywi ∈ Chrem(v) describes a literal equivalence, i.e.,
wi = 〈x ↔ l〉 and the union of ϑ(wi), denoted by Ev ,
represents a set of prime literal equivalences.

2. For each literal equivalence x ↔ l ∈ Ev , var(l) /∈
Vars(chcore(v)).

We now show how the model count of a kernelization
of formula is related to its core. For simplicity, we use a
sightly more general definition for model in Propositions 1–
2. Given a formula ϕ and a set of variablesX ⊇ V ars(ϕ), a
model of ϕ over X is an assignment over X that satisfies ϕ.
In practice, when we want to count models for ϕ, we only
need to make X = Vars(ϕ).

Proposition 1. For a kernelized conjunction v over X ,
if ϑ(chcore(v)) has m models over X , then ϑ(v) has

m
2|Chrem(v)| models over X .

Proof. Given each kernelized conjunction ϕ∧(xi1 ↔ li1)∧
· · · ∧ (xim ↔ lim), we can rewrite it as a recursive form[[
[ϕ∧ (xi1 ↔ li1)]∧ (∧xi2 ↔ li2)

]
∧ · · ·

]
∧ (xim ↔ lim).

Next we show given a kernelized conjunction ϕ = ψ∧(x↔
l) over X , if ψ has m models over X , then ϕ has m

2 models
over X . By induction, we get Proposition 1. Without loss of
generality, assume l = x′. As this is a kernalized conjuction,



x′ /∈ Vars(ψ). Let ω ∪ {x′ = false} and ω ∪ {x′ = true}
be two assignments over X , where ω is a model of ψ over
X \ {x′}. Since x↔ x′, exactly one of the two assignments
can be a model of ϕ, so half of the models of ψ are the
models of ϕ.

3.2 Defining CCDD

We begin with the widely used idea of augmenting de-
cision diagram with conjunction in knowledge compila-
tion (Fargier and Marquis 2006; Oztok and Darwiche 2014;
Bart et al. 2014; Lai, Liu, and Yin 2017). This idea is re-
stated in a general form, Conjunction & Decision Diagram,
to cover our kernelization-integrated languages:

Definition 4. A Conjunction & Decision Diagram (CDD)
is a rooted DAG wherein each node v is labeled with a
symbol sym(v). If v is a leaf, sym(v) = ⊥ or >. Oth-
erwise, sym(v) is a variable (v is called a decision node)
or operator ∧ (called a conjunction node). Each internal
node v has a set of children Ch(v). For a decision node,
Ch(v) = {lo(u), hi(u)}, where lo(u) (hi(u)) is connected
by a dashed (solid) edge. The formula represented by a CDD
rooted at u is defined as follows:

ϑ(u) =



false sym(u) = ⊥
true sym(u) = >∧

v∈Ch(u) ϑ(v) sym(u) = ∧
[¬sym(u) ∧ ϑ(lo(u))]∨
[sym(u) ∧ ϑ(hi(u))] otherwise

(1)

Hereafter we denote a leaf node by 〈⊥〉 or 〈>〉, an internal
node by 〈sym(v), Ch(v)〉; and sometimes a decision node
is denoted by 〈sym(v), lo(v), hi(v)〉. Given a CDD rooted
at v (denoted by Dv), its size |Dv| is defined as the num-
ber of its edges, similar to other languages in the knowledge
compilation literature. If we admit only read-once decisions
and decomposed conjunctions, then the subset of CDD is
Decision-DNNF. We are now ready to describe an extension
of Decision-DNNF that captures literal equivalence, by im-
posing a different constraint on conjunction:

Definition 5 (Constrained CDD, CCDD). A CDD is called
constrained if each decision node u and its decision descen-
dant v satisfy sym(u) 6= sym(v), and each conjunction
node v is either: (i) decomposed; or (ii) kernelized. The lan-
guage of all constrained CDDs is called CCDD.

We use ∧d and ∧k to denote decomposed and kernelized
conjunctions respectively. Figure 1 depicts a CCDD. Since
Decision-DNNF is a subset of CCDD and is known to be
complete, we obtain the following result on the complete-
ness of CCDD:

Theorem 1. Given a formula, there is at least one CCDD to
represent it.

3.3 Linear Model Counting
Now we are ready to show how CCDD supports model
counting in linear time:

∧k

∧d ∧k

x1

x2

x6x6

x5

⊥ ⊤

x4 x4

x3

⊥ ⊤

x5x5

x3

⊥ ⊤

x5

⊥ ⊤

⊤

Figure 1: A diagram in CCDD representing (x5 ↔ x6) ∧[[
¬x1∧x5∧[(¬x2∧x4)∨(x2∧(x3 ↔ ¬x4))]

]
∨
[
x1∧(x3 ↔

¬x4) ∧ (x3 ↔ x5)
]]

, where the core child of the root is the
child on the left hand side

Proposition 2. Given a node u in CCDD with Vars(u) ⊆ X
and a node v inDu, we useCT (v) to denote the model count
of ϑ(v) over X . Then CT (u) can be recursively computed
in linear time in |Du|:

CT (u) =



0 or 2|X| u is a leaf
c−1 ·

∏
v∈Ch(u) CT (v) u is a ∧d-node

CT (chcore(u))

2|Ch(u)|−1 u is a ∧k-node
CT (lo(u)) + CT (hi(u))

2
otherwise

where c = 2(|Ch(u)|−1)·|X|.

Proof. It is easy to see the case for the leaf nodes. The
case for kernelized conjunctions was discussed in Propo-
sition 1. For a decision node u, we can see that there are
only half of the models over X of its low (resp. high) child
satisfying ¬sym(u) ∧ ϑ(u) (resp. sym(u) ∧ ϑ(u)), since
sym(u) does not appear in ϑ(lo(u)) (resp. ϑ(hi(u))). Now
we discuss the case for decomposed conjunctions. Given a
decomposed conjunction u, we show that this proposition
holds when |Ch(u)| = 2. For the cases |Ch(u)| > 2,
we only need to iteratively use the conclusion of the case
|Ch(u)| = 2. Assume that Ch(u) = {v, w}. We can divide
X into three disjoint sets X1 = Vars(v), X2 = Vars(w),
and X3 = X \ (X1∪X2). Assume that ϑ(v) and ϑ(w) have
m1 andm2 models overX1 andX2, respectively. Then ϑ(v)
and ϑ(w) have m1 · 2|X2|+|X3| and m2 · 2|X1|+|X3| models
overX , respectively. ϑ(u) hasm1 ·m2 models overX1∪X2,
and has m1 ·m2 · 2|X3| models over X . It is easy to see the
following equation:

m1 ·m2 · 2|X3| =
m1 · 2|X2|+|X3| ·m2 · 2|X1|+|X3|

2|X|

4 ExactMC: A Scalable Model Counter
As discussed in previous section, CCDD has two key prop-
erties: CCDD is complete, i.e., every formula can be repre-
sented using CCDD and it supports linear model counting.
These two properties motivate us to design a model counter,



ExactMC, whose trace corresponds to CCDD. Algorithm
ExactMC takes in a CNF formula ϕ and the set of variables
X (initialized to Vars(ϕ)), and returns |sol(ϕ)|. ExactMC
is based on the architecture of search-based model counters,
as shown in Algorithm 1. We remark that in the context of
knowledge compilation, there are some other languages that
are generalizations of Decision-DNNF (see e.g., Sym-DDG
(Bart et al. 2014)). As far as we know, however, there are no
scalable model counters reported, based on these languages.

We first handle the base cases lines 1–2 corresponding
to the first case in Proposition 2. Since we are interested in
computing the number of satisfying assignments overX , we
return 2|X| in line 2 in case ϕ is true. We then turn to the
discovery and usage of literal equivalences in the formula
to perform model counting as presented in lines 4–11. We
use a heuristic, SHOULDKERNELIZE, to determine whether
we should spend time in detecting and using literal equiv-
alence because those steps are themselves possibly costly.
We discuss SHOULDKERNELIZE further in Section 4.1.
When SHOULDKERNELIZE returns true, we turn to DE-
TECTLITEQU to discover literal equivalences in the formula
in line 5 and if a non-trivial literal equivalence is discov-
ered, we proceed to perform exact model counting with re-
spect to kernelized conjunction in lines 7–9 (corresponding
to the third case in Proposition 2, where |bEc| is equal to the
number of children minus one). In particular, we first invoke
CONSTRUCTCORE to perform literal-substitution (see Sec-
tion 3.1) to obtain the formula, ϕ̂, corresponding to the core
child, and then recursively call ExactMC over ϕ̂.

If no non-trivial literal equivalence is found in line 5, then
the rest of the algorithm follows the template of search-
based model counters. We first invoke DECOMPOSE in
line 12 to determine if the formulaϕ can be decomposed into
components. If such a decomposition is not found, we pick
a variable x and recursively invoke ExactMC on the residual
formulas ϕ[x 7→ false] and ϕ[x 7→ true]. We remark that
lines 14–15 and lines 17–20 correspond to the second and
fourth cases in Proposition 2, respectively.

We now employ a simple example to show how kerneliza-
tion helps us to reduce the search space. For simplicity, we
assume PICKGOODVAR gives variables in the lexicographic
order, and SHOULDKERNELIZE always returns true or al-
ways returns false .

Example 2. Consider the CNF formula ϕ:

ϕ = (¬x1 ∨ ¬x2 ∨ x3) ∧ (¬x1 ∨ x2 ∨ ¬x3)
∧ (x1 ∨ ¬x2 ∨ ¬x3) ∧ (x1 ∨ x2 ∨ x3) ∧ (¬x1 ∨ ¬x4)
∧ (x1 ∨ x4) ∧ (¬x2 ∨ ¬x5) ∧ (x2 ∨ x5)

with X = {x1, . . . , x5}. Now, there are two cases:

Without Kernelization If SHOULDKERNELIZE is false ,
the trace of ExactMC will correspond to the CCDD in
Figure 2a.

With Kernelization If SHOULDKERNELIZE is true , we
can detect two literal equivalences x1 ↔ ¬x4 and x2 ↔
¬x5, and thus the residual sub-formula is equivalent to
(x1 ⊕ x2 ⊕ x3 = 1). After running lines 18–20, we have
two other literal equivalences x2 ↔ ¬x3 and x2 ↔ x3.

Algorithm 2: ExactMC(ϕ, X)
1 if ϕ = false then return 0

2 if ϕ = true then return 2|X|

3 if Cache(ϕ) 6= nil then return Cache(ϕ)
4 if SHOULDKERNELIZE(ϕ) then
5 E ← DETECTLITEQU(ϕ)
6 if |bEc| > 0 then
7 ϕ̂← CONSTRUCTCORE(ϕ, bEc)
8 c← ExactMC(ϕ̂,X)
9 return Cache(ϕ)← c

2|bEc|

10 end
11 end
12 Ψ← DECOMPOSE(ϕ)
13 if |Ψ| > 1 then
14 c←

∏
ψ∈Ψ{ExactMC(ψ,X)}

15 return Cache(ϕ)← c

2(|Ψ|−1)·|X|

16 else
17 x← PICKGOODVAR(ϕ)
18 c0 ← ExactMC(ϕ[x 7→ false], X)
19 c1 ← ExactMC(ϕ[x 7→ true], X)

20 return Cache(ϕ)← c0+c1
2

21 end

The trace corresponds to the CCDD in Figure 2b. When
backtracking to the call corresponding to the root, we
know the core child has 16 models over {x1, . . . , x5},
then ϕ has 16

22 = 4 models.

∧d

x2

x5

x1

x3

⊥ ⊤

∧d

x4

⊥ ⊤ ∧d

x5x3

⊥ ⊤

∧d

x2

∧d

x4

⊥ ⊤∧d

320

16

0 0

0

32 32

16 16 16 16

8 8 8 8 32

4 4 4

44
4

⊥ ⊤

0 32

⊥ ⊤

0 32

(a) CCDD without kernelization

∧k

x4 x4

x1

⊥ ⊤

x5 x5

x2

⊥ ⊤

x3 x3

x2

⊥ ⊤

x2

x1
16 16

16

4

∧k ∧k

⊤

32

⊤

32

(b) CCDD with kernelization

Figure 2: DAGs corresponding to counting of ϕ. The num-
ber labeled beside a node denotes its model count on
{x1, . . . , x5}



4.1 Implementation
Since the core contribution of our work lies in the on-the-
fly construction and usage of kernelized conjunction nodes,
we now discuss the implementation details that are crucial
for runtime efficiency. As is the case for most heuristics in
SAT solving and related communities, we selected param-
eters empirically and detailed analysis for different choices
of parameters is left to future work. Given the original for-
mula ϕ, we will use #NonUnitVars to denote the number
of variables appearing in the non-unit clauses of ϕ.

SHOULDKERNELIZE As mentioned earlier, the detection
and usage of literal equivalences can be significantly ad-
vantageous but our preliminary experiments indicated the
need for caution. In particular, we observed that the im-
plicit construction of kernelized conjunction node over
the trace was not helpful for easy instances. To this
end, we rely on the number of variables as a proxy for
the hardness of a formula, in particular at every level
of recursion, we classify a formula ϕ to be easy if
|V ars(ϕ)| ≤ easy bound , where easy bound is defined
by min(128,#NonUnitVars/2). If the formulaϕ is clas-
sified as easy, then SHOULDKERNELIZE returns false .
Else, we consider the search path from the last kerneliza-
tion (if no kernelization, then the root) to the current node.
If the number of unit clauses on the path is greater than 48
and also greater than twice the number of decisions on the
path, SHOULDKERNELIZE returns true. The intuition be-
hind the usage of unit clauses is that unit clauses are often
useful to simplify the current sub-formula and thus possi-
bly lead to many literal equivalences. In the other cases,
SHOULDKERNELIZE returns false. We empirically de-
termine the heuristic to have good performance.

DETECTLITEQU Recall, we need to check for a chosen
pair of literals l1 and l2, whether l1 ↔ l2 is a literal equiv-
alence implied by ϕ at line 5 in DETECTLITEQU. For an
efficient check, we rely on using implicit Boolean Con-
straint Propagation (i-BCP) for the assignments l1 ∧ ¬l2
and ¬l1 ∧ l2. The usage of i-BCP in model counting dates
back to sharpSAT (Thurley 2006).

Prime Literal Equivalences We employ union-find sets to
represent prime literal equivalences, which allows us to
efficiently compute prime literal equivalences from a set
of literal equivalences.

Decision Heuristics We combine the widely used heuris-
tic minfill (Darwiche 2009) and a new dynamic ordering,
which we call dynamic combined largest product (DLCP)
to pick good variables. Given a variable, the DLCP value
is the product of the weighted sum of negative appear-
ances and positive appearances of the variable. Given an
appearance, the heuristic considers the following cases:
(i) if it is in an original binary clause, the weight is 2;
(ii) if it is in a learnt binary clause, the weight is 1;
(iii) if it is in an original non-binary clause with m lit-
erals, the weight is 1

m ; otherwise, (iv) the weight is 0. If
the minfill treewidth is greater than a crossover constant
min(128,#NonUnitVars/7), we use DLCP, otherwise,
minfill.

We observed in the experiments that for an instance with
high treewidth, DLCP is often useful to lead to a sub-
formula with many literal equivalences after assigning
some variables.

5 Experiments
We implemented a prototype of ExactMC in C++ and evalu-
ated it on a comprehensive set of 1114 benchmarks (Bench-
marks) from a wide range of application areas, including au-
tomated planning, Bayesian networks, configuration, combi-
natorial circuits, inductive inference, model checking, pro-
gram synthesis, and quantitative information flow (QIF)
analysis. These instances have been employed in the past to
evaluate model counting and knowledge compilation tech-
niques (Lagniez and Marquis 2017; Lai, Liu, and Wang
2013; Lai, Liu, and Yin 2017; Soos and Meel 2019; Fre-
mont, Rabe, and Seshia 2017). The experiments were run on
a cluster2 where each node has 2xE5-2690v3 CPUs with 24
cores and 96GB of RAM. Each instance was run on a single
core with a timeout of 3600 seconds and 4GB memory.

We compared ExactMC with state-of-the-art from
exact counters from each of the three paradigms:
compilation-based, search-based or variable elimination-
based. Compilation-based counters used the following tar-
get languages: (i) miniC2D on SDD (Oztok and Darwiche
2015); (ii) c2d (Darwiche 2004) and D4 (Lagniez and Mar-
quis 2017) on d-DNNF. For search-based counters, we com-
pared with a state of the art tool called Ganak (Sharma
et al. 2019), which is a recent probabilistic exact model
counter that implicitly combines Decision-DNNF approach
with probabilistic hashing to provide exact model count
with a given confidence 1 − δ (we used the default δ =
0.05). Note that probabilistic exact is a stronger notion than
another related notion of probabilistic approximate count-
ing (Chakraborty, Meel, and Vardi 2019). Also, perhaps it
is worth remarking that Ganak builds on and was shown to
significantly improve upon the prior state of the art search-
based counter, sharpSAT. For variable elimination-based
counters, we compared with ADDMC (Dudek, Phan, and
Vardi 2020).

We used the widely employed pre-processing tool
B+E (Lagniez, Lonca, and Marquis 2016) for all the in-
stances, which was shown very powerful in model counting
(Lagniez, Lonca, and Marquis 2016; Sharma et al. 2019).
We remark that B+E can often simplify almost all of lit-
eral equivalences in the original formula detected by i-BCP.
We emphasize that the literal equivalences in ExactMC is a
“in-processing technology”, and since B+E is already used,
the literal equivalences used in ExactMC are basically the
ones appearing in the sub-formulas. Consistent with re-
cent studies, we excluded the preprocessing time from the
solving time for each tool as preprocessed instances were
used on all solvers. We emphasize that the usage of pre-
processing favors other competing tools than ExactMC. In
detail, Ganak, c2d, miniC2D, D4, ADDMC, and ExactMC
solved 173, 117, 170, 95, 283, and 54 less instances without

2The cluster is a typical HPC cluster where jobs are run through
a job queue.
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Figure 3: Cactus plot comparing the solving time of different
counters. (Best viewed in color)

the pre-processing, respectively. We employed the minfill
heuristic for variable ordering in miniC2D and c2d, which
has been shown to significantly improve runtime and space
performance (Muise et al. 2012; Lai, Liu, and Yin 2017).
D4 and Ganak employ their own custom variable ordering
heuristics, which were shown to improve their performance
(Lagniez and Marquis 2017; Sharma et al. 2019).

Table 1 shows the performance of the six counters. Over-
all, ExactMC solved 42, 47, 50, 99, and 132 more instances
than Ganak, c2d, D4, miniC2D, and ADDMC, respectively.
Upon closer inspection of the performance of various tools
across different domains, we observe that ExactMC per-
formed the best on seven out of nine domains. Figure 3
shows the cactus plot for runtime for all the six tools. The
x-axis gives the number of benchmarks; and the y-axis is
running time, i.e., a point (x, y) in Figure 3 shows that x
benchmarks took less than or equal to y seconds to solving.
The results show that ExactMC can improve the state-of-
the-art model counting across all three paradigms.

We remark that all of c2d, miniC2D, D4, and Ganak per-
form searches with respect to Decision-DNNF. In order to
show the effect of kernelization, we compared ExactMC
with the virtual best solver of c2d, miniC2D, D4, and
Ganak (VBS-DecDNNF). We found that even in such an
extreme case, ExactMC solved 9 more instances than VBS-
DecDNNF.

We present the effect of kernelization on some se-
lected instances and solving times in Table 2. The ex-
perimental results show that for some instances (e.g.,
blasted case 2 ptb 1), even a small number of kerneliza-
tions are very useful to accelerate solving. Furthermore, it
is worth noticing that we are able to perform a large num-
ber of kernelizations in the benchmarks, showing that sub-
stantial literal equivalence can occur in sub-formulas de-
spite the use of pre-processing, e.g. sygus 09A-1 (Program-
Synthesis). We also conducted experiments where kernel-
ization was disabled in ExactMC (without lines 4–11 in Al-
gorithm 2). We found that the resulting counter solved 17
less instances than the original version of ExactMC, and the

average PAR-2 score increased to 1613 from 1509.3
We analyze the running time for individual instances by

omitting the easy instances (solved by at least five tools
in under 2 seconds) and hard instances (not solved by any
tool). ExactMC performed the best on 39.5% instances,
while Ganak, c2d, miniC2D, D4, and ADDMC performed
the best on 22.3%, 2.5%, 3.9%, 16.1%, and 15.7%, re-
spectively.Compared with state-of-art counters, we see that
ExactMC is able to solve more instances with improved run-
time.

6 Discussion on Tractability of CCDD
Encouraged by the significant performance improvement
attained by ExactMC, we delve into deeper investigation
of the underlying language, CCDD. To this end, we study
CCDD from a knowledge compilation perspective and seek
to characterize the tractability of CCDD. In this paper, our
focus is on improving the scalability of model counters.
We refer the reader to Darwiche and Marquis’s seminal
work (Darwiche and Marquis 2002) for definitions of dif-
ferent standard operations in the literature. We focus on the
five queries: implicant check, model counting, consistency
check, validity check, and model enumeration.

We first show that CCDD supports tractable implicant
check:

Proposition 3. Given a consistent term T and a CCDD
node u, we use IM (T, u) to denote whether T |= ϑ(u). Then
IM (T, u) can be recursively performed in linear time:

IM (T, u) =



false sym(u) = ⊥
true sym(u) = >
IM (T, lo(u)) ¬sym(u) ∈ T
IM (T, hi(u)) sym(u) ∈ T∧

v∈Ch(u) IM (T, v) otherwise

Proof. The constant, and decomposed and kernelized con-
junction cases are obvious, and thus we focus on the deci-
sion case. Note that a literal equivalence is a special decision
node. For the case where ¬sym(u) ∈ T , each model of T is
not a model of sym(u) ∧ ϑ(hi(u)), and thus T |= ϑ(u) iff
T |= ϑ(lo(u)). The case where sym(u) ∈ T is similar. Oth-
erwise, T |= ϑ(u) iff ¬sym(u)∧T |= ¬sym(u)∧ϑ(lo(u))
and sym(u) ∧ T |= sym(u) ∧ ϑ(hi(u)) iff T |= ϑ(lo(u))
and T |= ϑ(hi(u)).

Since CCDD supports model counting in linear time,
we obtain that CCDD supports consistency check, validity
check, and model enumeration in polynomial time.

Theorem 2. CCDD supports model counting, consistency
check, validity check, and implicant check in time polyno-
mial in the DAG size, and supports model enumeration in
time polynomial in both the DAG size and model count.

According to the notations in the knowledge compilation
map (Darwiche and Marquis 2002), we know that CCDD

3The average PAR-2 scoring scheme gives a penalized average
runtime, assigning a runtime of two times the time limit (instead of
a “unsolved” status) for each benchmark not solved by a tool.



Table 1: Comparative counting performance between Ganak, c2d, miniC2D, D4, ADDMC, and ExactMC, where each cell
below tool refers to the number of solved instances

domain (#) probabilistic exact counter exact counter
Ganak c2d miniC2D D4 ADDMC ExactMC

Bayesian-Networks (201) 170 183 183 179 191 186
BlastedSMT (200) 163 160 155 162 166 169
Circuit (56) 49 50 48 49 45 51
Configuration (35) 35 35 28 33 21 31
Inductive-Inference (41) 18 19 15 18 3 22
Model-Checking (78) 73 74 71 72 64 74
Planning (243) 207 209 201 206 187 212
Program-Synthesis (220) 96 76 68 90 52 108
QIF (40) 32 32 17 26 24 32
Total (1114) 843 838 786 835 753 885

Table 2: Counting statistics on selected instances, where “–” denotes timeout or out of memory, “kdepth” denotes the maximum
number of kernelizations appearing in each path, “#kers” denotes the total number of kernelizations, and the other columns are
about solving time in seconds

domain instance Ganak c2d miniC2D D4 ADDMC ExactMC
time kdepth #kers

Bayesian-Networks Grids 11 1239.5 – – – 0.3 941.1 0 0
BlastedSMT blasted case 2 ptb 1 – – – – – 4.4 4 383
Circuit 2bitadd 11 – – – – – 2721.4 2 11580
Configuration C168 FW 338.6 14.0 23.1 68.3 – – – –
Inductive-Inference ii32d2 – – – – – 285.7 2 559
Model-Checking bmc-galileo-8 1.3 2145.9 – – – 1.7 6 34
Planning logistics.c 214.4 536.7 – 173.5 – 30.8 5 7579
Program-Synthesis sygus 09A-1 – – – – – 150.0 18 21851
QIF min-2s 61.3 0.3 20.1 125.4 0.1 10.3 1 8

satisfies CT, CO, VA, IM, and ME, respectively. We
mention that if we restrict the number of ∧k-nodes in each
path from the root to a leaf, to be a constant t, we can ob-
tain a subset of CCDD. This subset is still a superset of
Decision-DNNF, and supports the same tractable operations
as Decision-DNNF. We remark that another representation
in the knowledge compilation literature called EADT (Ko-
riche et al. 2013) uses a generalization of literal equivalence;
however, EADT is not a generalization of Decision-DNNF.

7 Conclusion

In this paper, we proposed a new model counting method
ExactMC whose trace corresponds to CCDD, which is a
generalization of Decision-DNNF. To this end, we intro-
duced a new notion of kernelization to capture literal equiv-
alence. Experimental results show that the performance of
ExactMC is significantly better than the state-of-art counters
Ganak, c2d, miniC2D, D4, and ADDMC. We believe that
ExactMC opens up new directions of future research in im-
provement of decision heuristics, caching schemes, and the
like for counters whose trace corresponds to CCDD. Since
the notion of kernelization is orthogonal to other notions
such as determinism, decomposability in knowledge com-
pilation, we also expect kernelization will help the knowl-
edge compilation community to identify more interesting
languages and develop more efficient compilers.
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