
Generating Random Instances of
Weighted Model Counting

An Empirical Analysis with Varying Primal Treewidth

Paulius Dilkas⋆

National University of Singapore, Singapore, Singapore
paulius.dilkas@nus.edu.sg

Abstract. Weighted model counting (WMC) is an extension of propo-
sitional model counting with applications to probabilistic inference and
other areas of artificial intelligence. In recent experiments, WMC algo-
rithms perform similarly overall but with significant differences on specific
subsets of benchmarks. A good understanding of the differences in the
performance of algorithms requires identifying key characteristics that
favour some algorithms over others. In this paper, we introduce a ran-
dom model for WMC instances with a parameter that influences primal
treewidth—the parameter most commonly used to characterise the diffi-
culty of an instance. We then use this model to experimentally compare
the performance of WMC algorithms c2d, Cachet, d4, DPMC, and
miniC2D. Using these random instances, we show that the easy-hard-easy
pattern is different for algorithms based on dynamic programming and
algebraic decision diagrams than for all other solvers. We also show how
all WMC algorithms scale exponentially with respect to primal treewidth
and how this scalability varies across algorithms and densities. Finally,
we combine insights from experiments involving both random and com-
petition instances to determine how the best-performing WMC algorithm
varies depending on clause density and primal treewidth.

Keywords: Weighted model counting · Random model · Parameterised
complexity

1 Introduction

Weighted model counting (WMC)—a weighted generalisation of propositional
model counting (#SAT) [19]—has emerged as a powerful computational frame-
work for problems in a variety of domains. In particular, WMC has been used to
perform probabilistic inference for graphical models [8, 16, 17, 29, 71], probabilistic
programs [55], and probabilistic logic programs [45]. More recently, WMC was
used in the context of neural-symbolic artificial intelligence as well [75]. Exten-
sions of WMC add support for continuous variables [11], infinite domains [10], and

⋆ The work was done while the author was a PhD student at the University of
Edinburgh.



2 P. Dilkas

first-order logic [51, 73] and generalise the definition to support arbitrary pseudo-
Boolean functions instead of clauses [35]. Exact WMC algorithms can be broadly
classified as based on search [69, 72], knowledge compilation [30, 58, 61], and
dynamic programming [38, 39]. Other alternatives include approximate [15, 65]
and parallel algorithms [24, 44], hybrid approaches [53], quantum computing [66],
and reduction to model counting [14].

Recent papers that include experimental comparisons of WMC algorithms
show many of them performing very similarly overall [38, 39] but with overwhelm-
ing differences when run on specific subsets of data [34, 35, 58]. Examples of such
segregating data sets include bipartite Bayesian networks by Sang et al. [71] and
relational Bayesian networks by Chavira et al. [20] that encode reachability in
graphs under node deletion. So far, such performance differences remain unex-
plained. However, knowledge about the nature of these differences can inform
our choices and aid in further algorithmic developments. Moreover, identifying
performance predictors of algorithms is often an important step in developing
a portfolio approach to the problem [76]. Lastly, if new algorithms are always
tested on the same set of benchmarks, eventually they may become somewhat
fitted to the particular characteristics of those instances, leading to algorithms
that may perform worse when run on new types of data [56].

Both theoretical and experimental analysis of SAT algorithms on random
instances is a rich area of research spanning almost forty years. Variations of some
of the first random models ever proposed [46, 63] continue to be instrumental up to
this day for, e.g., establishing the location of the threshold between satisfiable and
unsatisfiable instances [2] and approximating #SAT [47]. Other random models
consider non-uniform variable frequencies [3], fixing the number of times each
variable occurs both positively and negatively [22], and adding other constraints
such as cardinality and ‘exclusive or’ [62]. Experimental work investigating how
SAT algorithms behave on random instances typically focuses on parameters that
describe each instance independently of its size. The most common parameter
is the ratio of clauses to variables, i.e., (clause) density. Early work in the area
showed random 3-SAT instances to be at their hardest when density is around
4.25 [59]. Later work revealed that the interaction between density and empirical
hardness is much more solver-dependent [21]. Many other parameters such as
heterogeneity, locality, and modularity have emerged from attempts to generate
random instances similar to industry benchmarks [3, 13, 48, 49].

In contrast, the analysis of WMC algorithms on random instances is only
beginning to be developed. Early on, Sang et al. [69, 70] ran one of the WMC
algorithms on random 3-CNF formulas and observed an easy-hard-easy pattern
with respect to (w.r.t.) clause density. Recently, Gupta et al. [52] included some
WMC algorithms in their study on phase transitions in knowledge compilation.
Two phase transitions were identified: one w.r.t. clause density and another w.r.t.
a new parameter called solution density. There is also a recent attempt [33] to
compare WMC algorithms on random instances of a particular application of
WMC, i.e., probabilistic logic programs. However, it finds no meaningful differences
among the algorithms in that context. Our work complements previous results



Generating Random WMC Instances 3

by including WMC algorithms of various kinds (i.e., not just those based on
knowledge compilation) and introducing another parameter of interest.

What parameters are most appropriate to study WMC? Like SAT [4], WMC is
known to be fixed-parameter tractable w.r.t. primal treewidth (or a closely related
notion) [5, 26, 30, 69]. However—as we show in Section 4—instances generated
by a standard random model for k-CNF formulas fail to exhibit enough variance
in primal treewidth for us to infer its effect on the behaviour of the algorithms.
Therefore, we present an extension of this model with a parameter that influences
primal treewidth. The performance of WMC algorithms that use data structures
called algebraic decision diagrams (ADDs) [6] is also known to depend on the
numerical values of weights [38, 39]. Thus, our random model also includes two
parameters that control redundancies in these values.

In addition to introducing a new random model for WMC instances, the
contributions of this paper include several findings about the behaviour of WMC
algorithms on instances generated by our model. First, we show that the easy-
hard-easy pattern w.r.t. density is different for dynamic programming algorithms
than for all other algorithms. Second, we present statistical evidence that all the
algorithms scale exponentially w.r.t. primal treewidth and estimate how the base
of that exponential changes w.r.t. density. Third, we show how the performance
of ADD-based algorithms gradually improves w.r.t. the proportion of weights that
have repeating values. Fourth, we complement our findings on random instances
with an experimental study on WMC competition benchmarks, showing how the
best-performing algorithm changes depending on density and primal treewidth.

2 Preliminaries

Notation. For any graph G, we write V(G) for its set of nodes and E(G) for
its set of edges. Let S be a finite set. We write 2S to denote the powerset of S
and US for the discrete uniform probability distribution on S. We represent any
other probability distribution as a pair (S, p) where p∶S → [0,1] is a probability
mass function. For any probability distribution P , we write x¢ P to denote the
act of sampling x from P. For instance, x¢ ({1,2},{1↦ 0.1,2↦ 0.9}) means
that x becomes equal to 1 with probability 0.1 or to 2 with probability 0.9.

By variable, we always mean a Boolean variable. A literal is either a variable
(say, v) or its negation (denoted ¬v), respectively called positive and negative
literal. A clause is a disjunction of literals. A formula is any well-formed expression
consisting of variables, negation, conjunction, and disjunction. A formula is in
conjunctive normal form (CNF) if it is a conjunction of clauses, and it is in k-CNF
if every clause has exactly k literals. While we use the set-theoretic notation for
CNF formulas (e.g., writing c ∈ ϕ to mean that clause c is one of the clauses in
formula ϕ), duplicate clauses are still allowed. The primal graph of a CNF formula
is a graph that has a node for every variable, and there is an edge between two
variables if they coappear in some clause. The primal treewidth of a formula is
the treewidth of its primal graph, where treewidth is as in Definition 1.



4 P. Dilkas

Definition 1 ([67]). A tree decomposition of a graph G is a pair (T,χ),
where T is a tree and χ∶V(T )→ 2V(G) is a labelling function, with the following
properties:

– ⋃t∈V(T ) χ(t) = V(G);
– for every e ∈ E(G), there is t ∈ V(T ) such that e has both endpoints in χ(t);
– for all t, t′, t′′ ∈ V(T ), if t′ is on the path between t and t′′, then χ(t)∩χ(t′′) ⊆

χ(t′).
The width of tree decomposition (T,χ) is maxt∈V(T ) ∣χ(t)∣ − 1. The treewidth of
graph G is the smallest w such that G has a tree decomposition of width w.

Given a CNF formula ϕ, SAT is a decision problem that asks whether there
exists a way to assign values to all variables in ϕ such that ϕ evaluates to true.
Such a formula is said to be satisfiable; otherwise, it is unsatisfiable. #SAT is
a problem that asks to count the number of such assignments. WMC extends
#SAT with a weight function on literals and asks to compute the sum of the
weights of the models of the given formula, where the weight of a model is the
product of the weights of the literals in it [19]. For example, the WMC of the
formula x∨y with a weight function w∶{x, y,¬x,¬y }→ R≥0 defined as w(x) = 0.3,
w(y) = 0.2, w(¬x) = 0.7, w(¬y) = 0.8 is w(x)w(y) +w(x)w(¬y) +w(¬x)w(y) =
0.3 × 0.2 + 0.3 × 0.8 + 0.7 × 0.2 = 0.44.

3 Background on WMC Algorithms

In this section, we briefly review the three major approaches to WMC—search,
knowledge compilation, and dynamic programming—and their corresponding
algorithms. The main search-based WMC algorithm Cachet1 [69] is based on
a conflict-driven clause learning SAT solver [60], which is then extended with a
component caching scheme and adapted to counting.

Knowledge compilation refers to transformations of propositional formulas
into more restrictive formats that make various operations (such as model count-
ing) tractable in the size of the representation [32]. c2d2 [30], d43 [58], and
miniC2D4 [61] are all algorithms of this type. c2d compiles to deterministic
decomposable negation normal form (d-DNNF) [27]. Similarly, d4 compiles to
decision-DNNF (also known as decomposable decision graphs) [42]. The only
difference between d-DNNF and decision-DNNF is that decision-DNNF has if-
then-else constructions instead of disjunctions [58]. Finally, miniC2D compiles
to decision-SDDs—a subset of sentential decision diagrams (SDDs) that form a
subset of d-DNNF [31].

All of the algorithms mentioned above run the same way regardless of whether
computing WMC or #SAT. Two recent WMC algorithms instead use data struc-
tures whose size (and thus the runtime of the algorithm) depends on the numerical
1 https://henrykautz.com/Cachet/index.htm
2 http://reasoning.cs.ucla.edu/c2d/
3 https://www.cril.univ-artois.fr/KC/d4.html
4 http://reasoning.cs.ucla.edu/minic2d/



Generating Random WMC Instances 5

values of weights. These data structures represent pseudo-Boolean functions, i.e.,
functions of the form f ∶2X → R≥0, where X is a set. ADDMC is the first such
algorithm [38]. It uses ADDs to represent pseudo-Boolean functions, combin-
ing and simplifying them in a bottom-up dynamic programming fashion. Since
the size of an ADD for f depends on the cardinality of the range of f [6], the
performance of the algorithm is sensitive to the numerical values of weights,
e.g., to how frequently they repeat. DPMC5 extends ADDMC in two ways [39].
First, DPMC allows for the order and nesting of operations on ADDs to be
determined from an approximately-minimal-width tree decomposition rather
than by heuristics.6 Second, tensors are offered as an alternative to ADDs.

In all known parameterised complexities of WMC algorithms, the exponential
factor is a function of primal treewidth or a closely related parameter. Interestingly,
c2d is specifically designed to handle high primal treewidth (which the author
refers to as connectivity [25]) and improves upon an earlier algorithm that has
O(mw2w) time complexity, where m is the number of clauses, and w is the width
of the decomposition tree which is known to be at most primal treewidth [26, 30].
While the complexity of Cachet was not analysed directly, the algorithm is based
on component caching which is known to have a 2O(w)nO(1) time complexity,
where n is the number of variables, and w is the branchwidth of the underlying
hypergraph [5, 69], which is known to be within a constant factor of primal
treewidth [68]. Similarly, the complexity of DPMC is not described in the paper,
although the authors define a notion of width w that is at most primal treewidth
plus one and estimate the runtime of the (execution part of the) algorithm to be
proportional to 2w [39].

4 Random k-CNF Formulas with Varying Primal
Treewidth

Our random model is based on the following parameters: (a) the number of
variables ν ∈ N+, (b) density µ ∈ R>0, (c) clause width κ ∈ N+ (for k-CNF
formulas, κ = k), (d) a parameter ρ ∈ [0,1] that influences the primal treewidth
of the formula, (e) the proportion δ ∈ [0,1] of variables x such that w(x) = 1
and w(¬x) = 0 or w(x) = 0 and w(¬x) = 1, (f) and the proportion ϵ ∈ [0,1 − δ]
of variables x such that w(x) = w(¬x) = 0.5. The first three parameters are
the standard parameters used to generate random κ-CNF formulas with νµ
clauses (up to rounding). Parameters δ and ϵ control the numerical values of
weights similarly to determinism and parameter equality—facets of local structure
considered in the literature on probabilistic models [74]. While all other WMC
algorithms disregard the weights, DPMC [39] can exploit both determinism and
equal weights to solve the problem faster. Indeed, higher values of both δ and ϵ
result in ADDs having fewer real-numbered values they need to represent. Thus,
the ADDs are smaller and can be handled more efficiently.
5 https://github.com/vardigroup/dpmc
6 There is also a recent line of work in using tree decompositions to guide the heuristics

of search-based model counters [57].



6 P. Dilkas

Algorithm 1: Generating a random formula
Input: ν, κ ∈ N+ (such that κ < ν), µ ∈ R>0, ρ ∈ [0,1].
Output: A k-CNF formula ϕ.

1 ϕ← empty CNF formula;
2 G← empty graph;
3 for i← 1 to ⌊νµ⌋ do
4 X ← ∅;
5 for j ← 1 to κ do
6 x← NewVariable(X, G);
7 V(G)← V(G) ∪ {x};
8 E(G)← E(G) ∪ {{x, y } ∣ y ∈X };
9 X ←X ∪ {x};

10 ϕ← ϕ ∪ { l ¢ U{x,¬x} ∣ x ∈X };
11 return ϕ;
12 Function NewVariable(X, G):
13 N ← { e ∈ E(G) ∣ ∣e ∩X ∣ = 1};
14 if N = ∅ then
15 return x¢ U({x1, x2, . . . , xν } ∖X);

16 return x¢ ({x1, x2, . . . , xν } ∖X,

17 y ↦ 1−ρ
ν−∣X∣ + ρ ∣{z∈X∣{y,z }∈E(G) }∣∣N ∣ );

The process for generating random k-CNF formulas is summarized as Algo-
rithm 1. The idea behind the algorithm is to reduce the density of the primal
graph (via having some overlapping edges) while: (a) avoiding having many
variables that do not occur in any clause and (b) promoting tree-like subgraphs
that are likely to have low treewidth. For the rest of this section, let {xi}νi=1 be
the variables of the formula under construction. We simultaneously construct
both formula ϕ and its primal graph G.7 Each iteration of the first for-loop adds
a clause to ϕ. This is done by constructing a set X of variables to be included in
the clause, and then randomly adding either x or ¬x to the clause for each x ∈X
on line 10. Function NewVariable randomly selects each new variable x, and
lines 7–9 add x to the graph and the formula while also adding edges between x
and all the other variables in the clause. To select each variable, line 13 defines
set N to contain all edges with exactly one endpoint in X. The edges added to
G by line 8 form a subset of N . If N = ∅, we select the variable uniformly at
random (u.a.r.) from all viable candidates. Otherwise, ρ determines how much
we bias the uniform distribution towards variables that would introduce fewer
new edges to G.

When ρ = 0, Algorithm 1 reduces to what has become the standard random
model for k-CNF formulas. Equivalently to Franco and Paull [46], we indepen-

7 The idea to directly take the primal graph into consideration while generating the
formula is new—cf. random SAT instance generators based on, e.g., adversarial
evolution [56] and community structure [48].



Generating Random WMC Instances 7

dently sample a fixed number of clauses, each clause has no duplicate variables,
and each variable becomes either a positive or a negative literal with equal
probabilities. At the other extreme, when ρ = 1, the first variable of a clause
is still chosen u.a.r., but all other variables are chosen from those that already
coappear in a clause (if possible). The probability that a variable is selected to
be included in a clause scales linearly w.r.t. the proportion of edges in N that
would be repeatedly added to G if the variable y was added to the clause. This
is an arbitrary choice (which appears to work well, see Section 4.1) although
alternatives (e.g., exponential scaling) could be considered. As long as ρ < 1,
every k-CNF formula retains a positive probability of being generated by the
algorithm.

To transform the generated formula into a WMC instance, we need to de-
fine weights on literals.8 We want to partition all variables into three groups:
those with weights equal to zero and one, those with weights equal to 0.5, and
those with arbitrary weights, where the size of each group is determined by δ
and ϵ. To do this, we sample a permutation π ¢ USν (where Sν is the permu-
tation group on {1,2, . . . , ν}), and assign to each variable xn a weight drawn
u.a.r. from (a) U{0,1} if π(n) ≤ νδ, (b) U{0.5} if νδ < π(n) ≤ νδ + νϵ, and
(c) U{ 0.01, 0.02, . . . , 0.99}9 if π(n) > νδ + νϵ. We extend these weights to weights
on literals by choosing the weight of each positive literal to be equal to the
weight of its variable, and the weight of each negative literal to be such that
w(x) + w(¬x) = 1 for all variables x. This restriction is to ensure consistent
answers among the algorithms.

Example 1. Let ν = 5, µ = 0.6, κ = 3, ρ = 0.3, δ = 0.4, and ϵ = 0.2 and consider
how Algorithm 1 generates a random instance. Since κ = 3, and ⌊νµ⌋ = 3, the
algorithm will generate a 3-CNF formula with three clauses.

For the first variable of the first clause, we are choosing u.a.r. from {x1, x2, . . . , x5 }.
Suppose the algorithm chooses x5. Graph G then gets its first node but no edges.
The second variable is chosen u.a.r. from {x1, x2, x3, x4 }. Suppose the second
variable is x2. Then G gets another node and its first edge between x2 and x5.
The third variable in the first clause is similarly chosen u.a.r. from {x1, x3, x4 }
because the only edge in G has both endpoints in X = {x2, x5 }, and so N = ∅.
Suppose the third variable is x1. Graph G becomes a triangle connecting x1, x2,
and x5. Each of the three variables is then added to the clause as either a positive
or a negative literal (with equal probabilities). Thus, the first clause becomes,
e.g., ¬x5 ∨ x2 ∨ x1.

The first variable of the second clause is chosen u.a.r. from {x1, x2, . . . , x5 }.
Suppose it is x5 again. When the function NewVariable tries to choose the second
variable, X = {x5 }, and so N = {{x1, x5 },{x2, x5 }}. The second variable is
chosen from the discrete probability distribution Pr(x1) = Pr(x2) = 1−0.3

5−1
+0.3× 1

2
=

0.325 and Pr(x3) = Pr(x4) = 1−0.3
5−1
= 0.175.

8 Algorithms such as DPMC and ADDMC [38, 39] support a more flexible way of
assigning weights that can lead to significant performance improvements [34, 35].

9 For convenience, we represent (0,1) as 99 discrete values.



8 P. Dilkas

We skip the details of how all remaining variables and clauses are selected
and consider the weight assignment. First, we shuffle the list of variables and get,
e.g., L = (x4, x3, x2, x1, x5). This means that the first νδ = 5 × 0.4 = 2 variables of
L get weights u.a.r. from { 0, 1}, the next νϵ = 5×0.2 = 1 variable gets a weight of
0.5, and the remaining two variables get weights u.a.r. from { 0.01, 0.02, . . . , 0.99}.
The weight function w∶{x1, x2, . . . , x5,¬x1,¬x2, . . . ,¬x5 } → [0,1] can then be
defined as, e.g., w(x4) = w(¬x3) = 0, w(x3) = w(¬x4) = 1, w(x2) = w(¬x2) = 0.5,
w(x1) = 0.23, w(¬x1) = 0.77, w(x5) = 0.18, and w(¬x5) = 0.82.

4.1 Validating the Model

The idea behind our model is that manipulating the value of ρ should allow us to
generate instances of varying primal treewidth. Is this effect observable in practice?
In addition, as WMC instances are mostly used for probabilistic inference, they
tend to be satisfiable. Therefore, we want to filter out unsatisfiable instances
from those generated by the model and need to ensure that the proportion of
satisfiable instances remains sufficiently high. Given that higher values of ρ can
result in constraints on variables being more localised and concentrated, we ask:
are instances generated with higher values of ρ less likely to be satisfiable? To
answer both questions, we run the following experiment.

Experiment 1. We fix ν = 100, δ = ϵ = 0, and consider random instances with
µ = 2.5 ×

√
2
−5
, 2.5 ×

√
2
−4
, . . . , 2.5 ×

√
2
5
, κ = 2, 3, 4, 5, and ρ going from 0 to 1 in

steps of 0.01. For each combination of parameters, we generate ten instances.10

We check if each instance is satisfiable using MiniSat11 2.2.0 [41] and calculate
its (approximate) primal treewidth using htd12 [1].

Remark 1. Here and henceforth, we use htd to provide heuristic upper bounds
on true treewidth as exact computation would make the experiments significantly
more time-consuming. However, we compared the accuracy of htd with exact
treewidth algorithm Jdrasil13 [7] on 3% of our random instances. The difference
between the upper bound produced by htd and the exact value was never higher
than four and up to two in 85% of all cases. Since the difference is small enough
to not have a qualitative effect, hereafter we write ‘(primal) treewidth’ to mean
‘the heuristic upper bound on treewidth found by htd’.

Figure 1 shows the relationship between ρ and primal treewidth. Except for
when both µ and κ are very low (i.e., the formulas are small in both clause
width and the number of clauses), primal treewidth decreases as ρ increases.
This downward trend becomes sharper as µ increases, however, not uniformly: it
splits into a roughly linear segment that approaches a horizontal line (for most
10 Since one expects similar values of ρ to produce instances with similar properties,

and ρ’s are enumerate quite densely, generating only ten instances is sufficient.
11 http://minisat.se/MiniSat.html
12 https://github.com/mabseher/htd
13 https://maxbannach.github.io/Jdrasil/



Generating Random WMC Instances 9

µ = 0.4 µ = 0.6 µ = 0.9 µ = 1.2 µ = 1.8 µ = 2.5 µ = 3.5 µ = 5 µ = 7.1 µ = 10 µ = 14.1

κ
=

2
κ
=

3
κ
=

4
κ
=

5

0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1

0

50

100

0

50

100

0

50

100

0

50

100

ρ

Pr
im

al
tr

ee
w

id
th

Fig. 1. The relationship between ρ and primal treewidth for various values of µ and κ
for k-CNF formulas from Experiment 1. Black points represent individual instances,
and blue lines are smoothed means computed using locally weighted smoothing. The
values of µ are rounded to one decimal place.

values of ρ) and a sharply-decreasing segment that approaches a vertical line
(when ρ is close to one). Higher values of κ seem to expedite this transition, i.e.,
with a higher value of κ, a lower value of µ is sufficient for a smooth downward
curve between ρ and primal treewidth to turn into a combination of a horizontal
and a vertical line. While this behaviour may be troublesome when generating
formulas with higher values of µ (almost all of which would be unsatisfiable), the
relationship between ρ and primal treewidth is excellent for generating 3-CNF
formulas close to and below the satisfiability threshold of 4.25 [23]. Regarding
satisfiability, the proportion of satisfiable 3-CNF formulas drops from 63.6%
when ρ = 0 to 50.9% when ρ = 1, so—while ρ does affect satisfiability—the effect
is not significant enough to influence our experimental setup in the next section.



10 P. Dilkas

5 Experimental Results

In Section 5.1, we examine how the runtimes of WMC algorithms change w.r.t.
the parameters of our random model. Then, in Section 5.2, we run an experiment
with WMC competition benchmarks to check whether the conclusions drawn from
random instances apply to real data. Full experimental results as well as an imple-
mentation of Algorithm 1 are available at https://github.com/dilkas/cpaior23-d.

For all of these experiments, we use Scientific Linux 7, GCC 10.2.0, Python 3.8.1,
R 4.1.0, c2d 2.20 [30], Cachet 1.22 [69], htd 1.2.0 [1], and perform no preprocess-
ing. With both c2d and d4 [58], we use query-dnnf14 to compute the numerical
answer from the compiled circuit. We omit ADDMC [38] from our experiments
as it exceeds time and memory limits on too many instances; however, observa-
tions about the behaviour of DPMC [39] apply to ADDMC as well, with the
addendum that the tree decomposition implicitly used by ADDMC may have a
significantly higher width. DPMC is run with tree decomposition-based planning
(using one iteration of htd) and ADD-based execution—the combination that
was found to be most effective by Dudek et al. [39].

5.1 Experiments on Random Instances

We restrict our attention to 3-CNF formulas, generate 100 satisfiable instances
for each combination of parameters, and run each of the five algorithms with a
500 s time limit and an 8GiB memory limit on Intel Xeon E5–2630. While both
limits are somewhat low, we prioritise large numbers of instances to increase the
accuracy and reliability of our results. Unless stated otherwise, in each plot of
this section, lines denote median values, and shaded areas show interquartile
ranges. We run the following three experiments, setting ν = 70 in all of them as
we found that this produces instances of suitable difficulty.

Experiment 2 (Density and Primal Treewidth). Let ν = 70, µ go from 1
to 4.3 in steps of 0.3, ρ go from 0 to 0.5 in steps of 0.01, and δ = ϵ = 0.

Experiment 3 (δ). Let ν = 70, µ = 2.215, ρ = 0, δ go from 0 to 1 in steps of
0.01, and ϵ = 0.

Experiment 4 (ϵ). Same as Experiment 3 but with δ = 0 and ϵ going from 0
to 1 in steps of 0.01.

In each experiment, the proportion of algorithm runs that timed out never
exceeded 3.8%. While in Experiment 2 only 1% of experimental runs ran out
of memory, the same percentage was higher in Experiments 3 and 4—10 and
12%, respectively. d4 [58] and c2d are the algorithms that experienced the most
issues fitting within the memory limit, accounting for 66–72% and 28–33% of
such instances, respectively. We exclude the runs that terminated early due to
running out of memory from the rest of our analysis.
14 http://www.cril.univ-artois.fr/kc/d-DNNF-reasoner.html
15 Experiment 2 shows this density to be the most challenging for DPMC.



Generating Random WMC Instances 11

0

100

200

300

400

500

1 2 3 4

µ

T
im

e
(s
)

ρ = 0

0

100

200

300

400

500

20 25 30 35

Primal treewidth

µ = 1.9

1.0

1.2

1.4

1.6

1.8

1 2 3 4

B
as
e

1.0

1.2

1.4

1.6

1.8

1 2 3 4

c2d

Cachet

d4

DPMC

miniC2D

µ

Fig. 2. Visualisations of the data from Experiment 2. The top-left plot shows how the
runtime of each algorithm changes w.r.t. density when ρ = 0. The top-right plot shows
changes in the runtime of each algorithm w.r.t. primal treewidth with µ fixed at 1.9. The
plots at the bottom show how the estimated base of the exponential relationship between
primal treewidth and the runtime of each algorithm depends on µ. The bottom-left
plot is for the simple linear model (with shaded areas showing standard error), and the
bottom-right plot uses the estimates provided by ESA [64] (with shaded areas showing
95% confidence intervals).

In Experiment 2, we investigate how the runtime of each algorithm depends
on the density and primal treewidth by varying both µ and ρ. The results are in
Figure 2. The first thing to note is that the peak hardness w.r.t. density occurs
at around 1.9 for all algorithms except for DPMC, which peaks at 2.2 instead.16

This finding is consistent with previous works that show Cachet, miniC2D, and
a d-DNNF compilation algorithm to peak at 1.8 [28, 52, 69].17

The other question we want to investigate is how each algorithm scales w.r.t.
primal treewidth. The top-right plot in Figure 2 shows this relationship for a
fixed value of µ, and one can see some evidence that the runtime of DPMC

16 The exact values—while illegible from the plot—can be confirmed by numerical data.
17 For comparison, #SAT algorithms are known to peak at densities 1.2 and 1.5 [9, 12].



12 P. Dilkas

0.19 0.51 0 0.97 0.43

0.91 0.99 0.99 0.87 0.79

0.99 0.98 0.98 0.99 0.98

0.57 0.71 0.83 0.94 0.18

0.97 0.96 0.98 0.98 0.95
0.98 0.98 0.97 1 0.98

0.88 0.92 0.91 0.91 0.9

0.98 0.99 0.98 0.99 0.98
0.99 0.99 0.98 1 0.96

0.62 0.33 1 0.94 0.53

0.98 1 0.99 0.99 0.9

0.47 0.85 0.8 0.97 0.53

1

1.3

1.6

1.9

2.2

2.5

2.8

3.1

3.4

3.7

4

4.3

c2d Cachet d4 DPMCminiC2D

µ

0.25 0.50 0.75 1.00
R2

Fig. 3. The coefficients of determination (rounded to one decimal place) of all the linear
models fitted for the top-right subplot of Figure 2

grows faster w.r.t. primal treewidth compared to the other algorithms. We use
two statistical techniques to quantify this growth: a simple linear regression
model and the empirical scaling analyzer (ESA) v218 [64]. In both cases, for
each algorithm and value of µ in Experiment 2, we select the median runtime
for all available primal treewidth values. In the former case, we fit the model
ln t ∼ αw + β, where t is the median runtime of the algorithm, w is the primal
treewidth, and α and β are parameters.19 In other words, we express median
runtime as eβ(eα)w. In the latter case, we run ESA with 1001 bootstrap samples,
a window of 101, and use the first 30% of the data for training.

The results of both models are qualitatively the same (except for DPMC
run on instances with µ = 1) and are displayed at the bottom of Figure 2. We
find that DPMC scales worse w.r.t. primal treewidth than any other algorithm
across all values of µ and is the only algorithm that does not become indifferent
to primal treewidth when faced with high-density formulas. A second look at the
top-left subplot of Figure 2 suggests an explanation for the latter observation.
The runtimes of all algorithms except for DPMC approach zero when µ > 3 while
the median runtime of DPMC approaches a small non-zero constant instead.
This observation also explains why Figure 3 shows that the fitted models fail to
explain the data for non-ADD algorithms running on high-density instances—

18 https://github.com/YashaPushak/ESA
19 Similar analyses have been used to investigate polynomial-to-exponential phase

transitions in SAT [21] and the behaviour of SAT solvers on CNF-XOR formulas [37].



Generating Random WMC Instances 13

0

100

200

300

400

500

0.00 0.25 0.50 0.75 1.00

δ

0

100

200

300

400

500

0.00 0.25 0.50 0.75 1.00

ϵ

c2d

Cachet

d4

DPMC

miniC2D

T
im

e
(s
)

Fig. 4. Changes in the runtime of each algorithm as a result of changing δ (on the
left-hand side) and ϵ (on the right-hand side) as in Experiments 3 and 4

the runtimes are too small to be meaningful. In all other cases, an exponential
relationship between primal treewidth and runtime fits the experimental data
remarkably well.

Another thing to note is that miniC2D [61] is the only algorithm that exhibits
a clear low-high-low pattern in the bottom subplots of Figure 2. To a smaller
extent, the same may apply to c2d and DPMC, although the evidence for this
is limited due to relatively large gaps between different values of µ. In contrast,
the runtimes of Cachet and d4 remain dependent on primal treewidth even
when the density of the WMC instance is very low, suggesting that miniC2D
should have an advantage on low-density high-primal-treewidth instances.

Finally, Experiments 3 and 4 investigate how changing the numerical values
of weights can simplify a WMC instance. The results are in Figure 4. As expected,
the runtimes of all algorithms other than DPMC stay the same regardless
of the value of δ or ϵ. The runtime of DPMC, however, experiences a sharp
(exponential?) decline with increasing δ. The decline w.r.t. ϵ is also present,
although significantly less pronounced and with high variance.

To sum, we found that c2d and d4 are the most memory-intensive algorithms,
Cachet is great on random instances in general, miniC2D excels on low-density
high-primal-treewidth instances, and DPMC is at its best on low-density low-
primal-treewidth instances. Furthermore, a median instance with all weights
equal to each other is about three times easier for DPMC than a median instance
with random weights. Another important observation is about how peak hardness
w.r.t. density depends on the algorithm: DPMC peaks at a higher density than
all other WMC algorithms, which peak at a higher density than (some) #SAT
algorithms.

5.2 Experiments on Competition Benchmarks

To check whether our observations on random instances are accurate on real
data, we use the 100 public instances from track 2 of the 2022 model counting
competition20—an annual competition that has been running since 2020 [43].
20 https://mccompetition.org/2022/mc_description



14 P. Dilkas

[5,24]

(24,29.8]

(29.8,35.7]

(35.7,54.6]

(54.6,73]

(73,95]

(95,174]

(174,329]

(329,655]

(655,22110]

[0
.8
75
,1
.6
7]

(1
.6
7,
2.
23
]

(2
.2
3,
2.
46
]

(2
.4
6,
2.
54
]

(2
.5
4,
3.
76
]

(3
.7
6,
4.
29
]

(4
.2
9,
5.
23
]

(5
.2
3,
7.
06
]

(7
.0
6,
14
.4
]

(1
4.
4,
12
5]

Density

P
ri
m
a
l
tr
ee
w
id
th c2d

Cachet

d4

DPMC

miniC2D

Fig. 5. The best-performing algorithm for each combination of density and primal
treewidth according to the experiments on competition benchmarks. Both ranges of
values are divided into ten bins so that there are ten instances in each bin. The best-
performing algorithm for each combination of bins is the algorithm that solved the
largest number of instances, with ties broken by minimising total runtime. An empty cell
means that either no benchmark had this combination of density and primal treewidth
or all algorithms failed on all such instances.

This time, we run the algorithms on Intel Xeon Gold 6138 with 32GiB of memory
and a one hour time limit. As in Section 5.1, we compute the density and the
primal treewidth of each instance.

Figure 5 shows the best-performing algorithm for various combinations of the
parameters. We observe that: (a) DPMC [39] is best on most instances with low
primal treewidth, (b) c2d [30] can handle some low-density high-primal-treewidth
instances that all the other algorithms fail on, (c) Cachet [69] (as well as d4 [58]
to some extent) excel when both density and primal treewidth are quite high,
(d) and miniC2D [61] does not have a clear niche. Hence, the observation in
Section 5.1 that DPMC is good on low-density low-primal-treewidth instances is
confirmed by the experiments on real data. Moreover, higher density instances
can also favour DPMC as long as primal treewidth is sufficiently low. On the
other hand, while the experiments on random instances suggested that miniC2D



Generating Random WMC Instances 15

might excel at low-density high-primal-treewidth instances, our experiments on
competition benchmarks suggest otherwise. Instead, c2d, Cachet or DPMC
could be the right choice depending on the exact values.

6 Conclusions and Future Work

In this paper, we studied the behaviour of and differences among WMC algorithms
on random instances generated by a standard model for k-CNF formulas extended
with parameters that control primal treewidth and literal weights. Among other
things, we established statistical evidence for the existence of an exponential
relationship between primal treewidth and the runtimes of all WMC algorithms
on instances generated by our model. The runtime of the ADD-based algorithm
was observed to peak at a higher density, scale worse w.r.t. primal treewidth,
and depend negatively on repeating weight values compared to algorithms based
on search or knowledge compilation. These observations can, to some degree, be
extended to a closely related weighted projected model counting algorithm [40]
as well as to other applications of ADDs more generally, e.g., probabilistic
inference [18, 50] and stochastic planning [54].

One limitation of our work is that variability in primal treewidth was achieved
via a parameter, and this could bias randomness in some unexpected way (al-
though it is encouraging that there is only a slight decrease in the proportion of
satisfiable instances between ρ = 0 and ρ = 1). Perhaps a theoretical investigation
of the proposed model is warranted, including a characterisation of how ρ influ-
ences primal treewidth and the structure of the primal graph more generally. Since
treewidth is widely used in parameterised complexity [36], formally establishing
a connection with ρ could make our random model useful for a variety of other
hard computational problems.

To keep the number of experiments feasible, we restricted our attention to
3-CNF formulas, although, of course, this is not very representative of real-world
WMC instances. The model could be adapted to generate non-k-CNF formulas,
and perhaps a more representative structure could be achieved by introducing
new variables that clauses define to be equivalent to select conjunctions of literals
as is done in one of the WMC encodings for Bayesian networks [29].

Acknowledgements. The author would like to thank Vaishak Belle and the
anonymous reviewers for their feedback on earlier versions of this work. The
author was supported by the EPSRC Centre for Doctoral Training in Robotics
and Autonomous Systems, funded by the UK Engineering and Physical Sci-
ences Research Council (grant EP/L016834/1). This work has made use of
the resources provided by the Edinburgh Compute and Data Facility (ECDF)
(http://www.ecdf.ed.ac.uk/). For the purpose of open access, the author has ap-
plied a Creative Commons Attribution (CC BY) licence to any Author Accepted
Manuscript version arising from this submission.



16 P. Dilkas

References

1. Abseher, M., Musliu, N., Woltran, S.: htd - A free, open-source framework for
(customized) tree decompositions and beyond. In: Salvagnin, D., Lombardi, M.
(eds.) Integration of AI and OR Techniques in Constraint Programming - 14th
International Conference, CPAIOR 2017, Padua, Italy, June 5-8, 2017, Proceedings.
Lecture Notes in Computer Science, vol. 10335, pp. 376–386. Springer (2017).
https://doi.org/10.1007/978-3-319-59776-8_30

2. Achlioptas, D., Moore, C.: The asymptotic order of the random k-SAT threshold.
In: 43rd Symposium on Foundations of Computer Science (FOCS 2002), 16-19
November 2002, Vancouver, BC, Canada, Proceedings. pp. 779–788. IEEE Computer
Society (2002). https://doi.org/10.1109/SFCS.2002.1182003

3. Ansótegui, C., Bonet, M.L., Levy, J.: Towards industrial-like random SAT instances.
In: Boutilier, C. (ed.) IJCAI 2009, Proceedings of the 21st International Joint
Conference on Artificial Intelligence, Pasadena, California, USA, July 11-17, 2009.
pp. 387–392 (2009), http://ijcai.org/Proceedings/09/Papers/072.pdf

4. Atserias, A., Fichte, J.K., Thurley, M.: Clause-learning algorithms with many
restarts and bounded-width resolution. J. Artif. Intell. Res. 40, 353–373 (2011).
https://doi.org/10.1613/jair.3152

5. Bacchus, F., Dalmao, S., Pitassi, T.: Solving #SAT and Bayesian infer-
ence with backtracking search. J. Artif. Intell. Res. 34, 391–442 (2009).
https://doi.org/10.1613/jair.2648

6. Bahar, R.I., Frohm, E.A., Gaona, C.M., Hachtel, G.D., Macii, E., Pardo, A.,
Somenzi, F.: Algebraic decision diagrams and their applications. Formal Methods
Syst. Des. 10(2/3), 171–206 (1997). https://doi.org/10.1023/A:1008699807402

7. Bannach, M., Berndt, S., Ehlers, T.: Jdrasil: A modular library for computing tree
decompositions. In: Iliopoulos, C.S., Pissis, S.P., Puglisi, S.J., Raman, R. (eds.) 16th
International Symposium on Experimental Algorithms, SEA 2017, June 21-23, 2017,
London, UK. LIPIcs, vol. 75, pp. 28:1–28:21. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik (2017). https://doi.org/10.4230/LIPIcs.SEA.2017.28

8. Bart, A., Koriche, F., Lagniez, J., Marquis, P.: An improved CNF encoding scheme
for probabilistic inference. In: Kaminka, G.A., Fox, M., Bouquet, P., Hüllermeier,
E., Dignum, V., Dignum, F., van Harmelen, F. (eds.) ECAI 2016 - 22nd European
Conference on Artificial Intelligence, 29 August-2 September 2016, The Hague, The
Netherlands - Including Prestigious Applications of Artificial Intelligence (PAIS
2016). Frontiers in Artificial Intelligence and Applications, vol. 285, pp. 613–621.
IOS Press (2016). https://doi.org/10.3233/978-1-61499-672-9-613

9. Bayardo Jr., R.J., Pehoushek, J.D.: Counting models using connected compo-
nents. In: Kautz, H.A., Porter, B.W. (eds.) Proceedings of the Seventeenth
National Conference on Artificial Intelligence and Twelfth Conference on on
Innovative Applications of Artificial Intelligence, July 30 - August 3, 2000,
Austin, Texas, USA. pp. 157–162. AAAI Press / The MIT Press (2000),
http://www.aaai.org/Library/AAAI/2000/aaai00-024.php

10. Belle, V.: Open-universe weighted model counting. In: Singh, S., Markovitch, S.
(eds.) Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence,
February 4-9, 2017, San Francisco, California, USA. pp. 3701–3708. AAAI Press
(2017), http://aaai.org/ocs/index.php/AAAI/AAAI17/paper/view/15008

11. Belle, V., Passerini, A., Van den Broeck, G.: Probabilistic inference in hybrid
domains by weighted model integration. In: Yang, Q., Wooldridge, M.J. (eds.)
Proceedings of the Twenty-Fourth International Joint Conference on Artificial



Generating Random WMC Instances 17

Intelligence, IJCAI 2015, Buenos Aires, Argentina, July 25-31, 2015. pp. 2770–2776.
AAAI Press (2015), http://ijcai.org/Abstract/15/392

12. Birnbaum, E., Lozinskii, E.L.: The good old Davis-Putnam procedure helps counting
models. J. Artif. Intell. Res. 10, 457–477 (1999). https://doi.org/10.1613/jair.601

13. Bläsius, T., Friedrich, T., Sutton, A.M.: On the empirical time complexity of
scale-free 3-SAT at the phase transition. In: Vojnar, T., Zhang, L. (eds.) Tools
and Algorithms for the Construction and Analysis of Systems - 25th International
Conference, TACAS 2019, Held as Part of the European Joint Conferences on
Theory and Practice of Software, ETAPS 2019, Prague, Czech Republic, April
6-11, 2019, Proceedings, Part I. Lecture Notes in Computer Science, vol. 11427, pp.
117–134. Springer (2019). https://doi.org/10.1007/978-3-030-17462-0_7

14. Chakraborty, S., Fried, D., Meel, K.S., Vardi, M.Y.: From weighted to unweighted
model counting. In: Yang, Q., Wooldridge, M.J. (eds.) Proceedings of the Twenty-
Fourth International Joint Conference on Artificial Intelligence, IJCAI 2015,
Buenos Aires, Argentina, July 25-31, 2015. pp. 689–695. AAAI Press (2015),
http://ijcai.org/Abstract/15/103

15. Chakraborty, S., Meel, K.S., Vardi, M.Y.: Approximate model counting. In: Biere,
A., Heule, M., van Maaren, H., Walsh, T. (eds.) Handbook of Satisfiability - Second
Edition, Frontiers in Artificial Intelligence and Applications, vol. 336, pp. 1015–1045.
IOS Press (2021). https://doi.org/10.3233/FAIA201010

16. Chavira, M., Darwiche, A.: Compiling Bayesian networks with local structure.
In: Kaelbling, L.P., Saffiotti, A. (eds.) IJCAI-05, Proceedings of the Nineteenth
International Joint Conference on Artificial Intelligence, Edinburgh, Scotland,
UK, July 30 - August 5, 2005. pp. 1306–1312. Professional Book Center (2005),
http://ijcai.org/Proceedings/05/Papers/0931.pdf

17. Chavira, M., Darwiche, A.: Encoding CNFs to empower component analysis. In:
Biere, A., Gomes, C.P. (eds.) Theory and Applications of Satisfiability Testing -
SAT 2006, 9th International Conference, Seattle, WA, USA, August 12-15, 2006,
Proceedings. Lecture Notes in Computer Science, vol. 4121, pp. 61–74. Springer
(2006). https://doi.org/10.1007/11814948_9

18. Chavira, M., Darwiche, A.: Compiling Bayesian networks using variable elimination.
In: Veloso, M.M. (ed.) IJCAI 2007, Proceedings of the 20th International Joint
Conference on Artificial Intelligence, Hyderabad, India, January 6-12, 2007. pp.
2443–2449 (2007), http://ijcai.org/Proceedings/07/Papers/393.pdf

19. Chavira, M., Darwiche, A.: On probabilistic inference by weighted model counting.
Artif. Intell. 172(6-7), 772–799 (2008). https://doi.org/10.1016/j.artint.2007.11.002

20. Chavira, M., Darwiche, A., Jaeger, M.: Compiling relational Bayesian net-
works for exact inference. Int. J. Approx. Reason. 42(1-2), 4–20 (2006).
https://doi.org/10.1016/j.ijar.2005.10.001

21. Coarfa, C., Demopoulos, D.D., Aguirre, A.S.M., Subramanian, D., Vardi, M.Y.:
Random 3-SAT: The plot thickens. Constraints An Int. J. 8(3), 243–261 (2003).
https://doi.org/10.1023/A:1025671026963

22. Coja-Oghlan, A., Wormald, N.: The number of satisfying assignments of ran-
dom regular k-SAT formulas. Comb. Probab. Comput. 27(4), 496–530 (2018).
https://doi.org/10.1017/S0963548318000263

23. Crawford, J.M., Auton, L.D.: Experimental results on the crossover point in ran-
dom 3-SAT. Artif. Intell. 81(1-2), 31–57 (1996). https://doi.org/10.1016/0004-
3702(95)00046-1

24. Dal, G.H., Laarman, A.W., Lucas, P.J.F.: Parallel probabilistic inference by weighted
model counting. In: Studený, M., Kratochvíl, V. (eds.) International Conference on



18 P. Dilkas

Probabilistic Graphical Models, PGM 2018, 11-14 September 2018, Prague, Czech
Republic. Proceedings of Machine Learning Research, vol. 72, pp. 97–108. PMLR
(2018), http://proceedings.mlr.press/v72/dal18a.html

25. Darwiche, A.: Compiling knowledge into decomposable negation normal form. In:
Dean, T. (ed.) Proceedings of the Sixteenth International Joint Conference on Artifi-
cial Intelligence, IJCAI 99, Stockholm, Sweden, July 31 - August 6, 1999. 2 Volumes,
1450 pages. pp. 284–289. Morgan Kaufmann (1999), http://ijcai.org/Proceedings/99-
1/Papers/042.pdf

26. Darwiche, A.: Decomposable negation normal form. J. ACM 48(4), 608–647 (2001).
https://doi.org/10.1145/502090.502091

27. Darwiche, A.: On the tractable counting of theory models and its application to
truth maintenance and belief revision. J. Appl. Non Class. Logics 11(1-2), 11–34
(2001). https://doi.org/10.3166/jancl.11.11-34

28. Darwiche, A.: A compiler for deterministic, decomposable negation normal form.
In: Dechter, R., Kearns, M.J., Sutton, R.S. (eds.) Proceedings of the Eighteenth
National Conference on Artificial Intelligence and Fourteenth Conference on In-
novative Applications of Artificial Intelligence, July 28 - August 1, 2002, Ed-
monton, Alberta, Canada. pp. 627–634. AAAI Press / The MIT Press (2002),
http://www.aaai.org/Library/AAAI/2002/aaai02-094.php

29. Darwiche, A.: A logical approach to factoring belief networks. In: Fensel, D.,
Giunchiglia, F., McGuinness, D.L., Williams, M. (eds.) Proceedings of the Eights
International Conference on Principles and Knowledge Representation and Reason-
ing (KR-02), Toulouse, France, April 22-25, 2002. pp. 409–420. Morgan Kaufmann
(2002)

30. Darwiche, A.: New advances in compiling CNF into decomposable negation normal
form. In: de Mántaras, R.L., Saitta, L. (eds.) Proceedings of the 16th Eureopean
Conference on Artificial Intelligence, ECAI’2004, including Prestigious Applicants
of Intelligent Systems, PAIS 2004, Valencia, Spain, August 22-27, 2004. pp. 328–332.
IOS Press (2004)

31. Darwiche, A.: SDD: A new canonical representation of propositional knowledge
bases. In: Walsh, T. (ed.) IJCAI 2011, Proceedings of the 22nd International
Joint Conference on Artificial Intelligence, Barcelona, Catalonia, Spain, July 16-22,
2011. pp. 819–826. IJCAI/AAAI (2011). https://doi.org/10.5591/978-1-57735-516-
8/IJCAI11-143

32. Darwiche, A., Marquis, P.: A knowledge compilation map. J. Artif. Intell. Res. 17,
229–264 (2002). https://doi.org/10.1613/jair.989

33. Dilkas, P., Belle, V.: Generating random logic programs using constraint program-
ming. In: Simonis, H. (ed.) Principles and Practice of Constraint Programming -
26th International Conference, CP 2020, Louvain-la-Neuve, Belgium, September
7-11, 2020, Proceedings. Lecture Notes in Computer Science, vol. 12333, pp. 828–845.
Springer (2020). https://doi.org/10.1007/978-3-030-58475-7_48

34. Dilkas, P., Belle, V.: Weighted model counting with conditional weights for Bayesian
networks. In: de Campos, C.P., Maathuis, M.H., Quaeghebeur, E. (eds.) Proceedings
of the Thirty-Seventh Conference on Uncertainty in Artificial Intelligence, UAI 2021,
Virtual Event, 27-30 July 2021. Proceedings of Machine Learning Research, vol. 161,
pp. 386–396. AUAI Press (2021), https://proceedings.mlr.press/v161/dilkas21a.html

35. Dilkas, P., Belle, V.: Weighted model counting without parameter variables. In:
Li, C., Manyà, F. (eds.) Theory and Applications of Satisfiability Testing - SAT
2021 - 24th International Conference, Barcelona, Spain, July 5-9, 2021, Proceedings.
Lecture Notes in Computer Science, vol. 12831, pp. 134–151. Springer (2021).
https://doi.org/10.1007/978-3-030-80223-3_10



Generating Random WMC Instances 19

36. Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity. Texts
in Computer Science, Springer (2013). https://doi.org/10.1007/978-1-4471-5559-1

37. Dudek, J.M., Meel, K.S., Vardi, M.Y.: The hard problems are almost every-
where for random CNF-XOR formulas. In: Sierra, C. (ed.) Proceedings of the
Twenty-Sixth International Joint Conference on Artificial Intelligence, IJCAI
2017, Melbourne, Australia, August 19-25, 2017. pp. 600–606. ijcai.org (2017).
https://doi.org/10.24963/ijcai.2017/84

38. Dudek, J.M., Phan, V., Vardi, M.Y.: ADDMC: Weighted model counting
with algebraic decision diagrams. In: The Thirty-Fourth AAAI Conference
on Artificial Intelligence, AAAI 2020, The Thirty-Second Innovative Applica-
tions of Artificial Intelligence Conference, IAAI 2020, The Tenth AAAI Sym-
posium on Educational Advances in Artificial Intelligence, EAAI 2020, New
York, NY, USA, February 7-12, 2020. pp. 1468–1476. AAAI Press (2020),
https://ojs.aaai.org/index.php/AAAI/article/view/5505

39. Dudek, J.M., Phan, V.H.N., Vardi, M.Y.: DPMC: Weighted model counting by dy-
namic programming on project-join trees. In: Simonis, H. (ed.) Principles and Prac-
tice of Constraint Programming - 26th International Conference, CP 2020, Louvain-
la-Neuve, Belgium, September 7-11, 2020, Proceedings. Lecture Notes in Computer
Science, vol. 12333, pp. 211–230. Springer (2020). https://doi.org/10.1007/978-3-
030-58475-7_13

40. Dudek, J.M., Phan, V.H.N., Vardi, M.Y.: ProCount: Weighted projected model
counting with graded project-join trees. In: Li, C., Manyà, F. (eds.) Theory and
Applications of Satisfiability Testing - SAT 2021 - 24th International Conference,
Barcelona, Spain, July 5-9, 2021, Proceedings. Lecture Notes in Computer Science,
vol. 12831, pp. 152–170. Springer (2021). https://doi.org/10.1007/978-3-030-80223-
3_11

41. Eén, N., Sörensson, N.: An extensible SAT-solver. In: Giunchiglia, E., Tacchella, A.
(eds.) Theory and Applications of Satisfiability Testing, 6th International Confer-
ence, SAT 2003. Santa Margherita Ligure, Italy, May 5-8, 2003 Selected Revised
Papers. Lecture Notes in Computer Science, vol. 2919, pp. 502–518. Springer (2003).
https://doi.org/10.1007/978-3-540-24605-3_37

42. Fargier, H., Marquis, P.: On the use of partially ordered decision graphs
in knowledge compilation and quantified Boolean formulae. In: Proceed-
ings, The Twenty-First National Conference on Artificial Intelligence and the
Eighteenth Innovative Applications of Artificial Intelligence Conference, July
16-20, 2006, Boston, Massachusetts, USA. pp. 42–47. AAAI Press (2006),
http://www.aaai.org/Library/AAAI/2006/aaai06-007.php

43. Fichte, J.K., Hecher, M., Hamiti, F.: The model counting competition 2020. ACM
J. Exp. Algorithmics 26, 13:1–13:26 (2021). https://doi.org/10.1145/3459080

44. Fichte, J.K., Hecher, M., Woltran, S., Zisser, M.: Weighted model counting on
the GPU by exploiting small treewidth. In: Azar, Y., Bast, H., Herman, G. (eds.)
26th Annual European Symposium on Algorithms, ESA 2018, August 20-22, 2018,
Helsinki, Finland. LIPIcs, vol. 112, pp. 28:1–28:16. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik (2018). https://doi.org/10.4230/LIPIcs.ESA.2018.28

45. Fierens, D., Van den Broeck, G., Renkens, J., Shterionov, D.S., Gutmann, B., Thon,
I., Janssens, G., De Raedt, L.: Inference and learning in probabilistic logic programs
using weighted Boolean formulas. Theory Pract. Log. Program. 15(3), 358–401
(2015). https://doi.org/10.1017/S1471068414000076



20 P. Dilkas

46. Franco, J., Paull, M.C.: Probabilistic analysis of the Davis Putnam procedure
for solving the satisfiability problem. Discret. Appl. Math. 5(1), 77–87 (1983).
https://doi.org/10.1016/0166-218X(83)90017-3

47. Galanis, A., Goldberg, L.A., Guo, H., Yang, K.: Counting solutions
to random CNF formulas. SIAM J. Comput. 50(6), 1701–1738 (2021).
https://doi.org/10.1137/20M1351527

48. Giráldez-Cru, J., Levy, J.: Generating SAT instances with community structure.
Artif. Intell. 238, 119–134 (2016). https://doi.org/10.1016/j.artint.2016.06.001

49. Giráldez-Cru, J., Levy, J.: Locality in random SAT instances. In: Sierra, C. (ed.)
Proceedings of the Twenty-Sixth International Joint Conference on Artificial In-
telligence, IJCAI 2017, Melbourne, Australia, August 19-25, 2017. pp. 638–644.
ijcai.org (2017). https://doi.org/10.24963/ijcai.2017/89

50. Gogate, V., Domingos, P.M.: Approximation by quantization. In: Cozman, F.G.,
Pfeffer, A. (eds.) UAI 2011, Proceedings of the Twenty-Seventh Conference on
Uncertainty in Artificial Intelligence, Barcelona, Spain, July 14-17, 2011. pp. 247–
255. AUAI Press (2011)

51. Gogate, V., Domingos, P.M.: Probabilistic theorem proving. Commun. ACM 59(7),
107–115 (2016). https://doi.org/10.1145/2936726

52. Gupta, R., Roy, S., Meel, K.S.: Phase transition behavior in knowledge compilation.
In: Simonis, H. (ed.) Principles and Practice of Constraint Programming - 26th
International Conference, CP 2020, Louvain-la-Neuve, Belgium, September 7-11,
2020, Proceedings. Lecture Notes in Computer Science, vol. 12333, pp. 358–374.
Springer (2020). https://doi.org/10.1007/978-3-030-58475-7_21

53. Hecher, M., Thier, P., Woltran, S.: Taming high treewidth with abstraction, nested
dynamic programming, and database technology. In: Pulina, L., Seidl, M. (eds.)
Theory and Applications of Satisfiability Testing - SAT 2020 - 23rd International
Conference, Alghero, Italy, July 3-10, 2020, Proceedings. Lecture Notes in Computer
Science, vol. 12178, pp. 343–360. Springer (2020). https://doi.org/10.1007/978-3-
030-51825-7_25

54. Hoey, J., St-Aubin, R., Hu, A.J., Boutilier, C.: SPUDD: Stochastic planning using
decision diagrams. In: Laskey, K.B., Prade, H. (eds.) UAI ’99: Proceedings of the
Fifteenth Conference on Uncertainty in Artificial Intelligence, Stockholm, Sweden,
July 30 - August 1, 1999. pp. 279–288. Morgan Kaufmann (1999)

55. Holtzen, S., Van den Broeck, G., Millstein, T.D.: Scaling exact inference for discrete
probabilistic programs. Proc. ACM Program. Lang. 4(OOPSLA), 140:1–140:31
(2020). https://doi.org/10.1145/3428208

56. Hossain, M.M., Abbass, H.A., Lokan, C., Alam, S.: Adversarial evolution: Phase
transition in non-uniform hard satisfiability problems. In: Proceedings of the IEEE
Congress on Evolutionary Computation, CEC 2010, Barcelona, Spain, 18-23 July
2010. pp. 1–8. IEEE (2010). https://doi.org/10.1109/CEC.2010.5586506

57. Korhonen, T., Järvisalo, M.: Integrating tree decompositions into decision heuris-
tics of propositional model counters (short paper). In: Michel, L.D. (ed.) 27th
International Conference on Principles and Practice of Constraint Programming,
CP 2021, Montpellier, France (Virtual Conference), October 25-29, 2021. LIPIcs,
vol. 210, pp. 8:1–8:11. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2021).
https://doi.org/10.4230/LIPIcs.CP.2021.8

58. Lagniez, J., Marquis, P.: An improved decision-DNNF compiler. In: Sierra, C.
(ed.) Proceedings of the Twenty-Sixth International Joint Conference on Artificial
Intelligence, IJCAI 2017, Melbourne, Australia, August 19-25, 2017. pp. 667–673.
ijcai.org (2017). https://doi.org/10.24963/ijcai.2017/93



Generating Random WMC Instances 21

59. Mitchell, D.G., Selman, B., Levesque, H.J.: Hard and easy distributions of SAT
problems. In: Swartout, W.R. (ed.) Proceedings of the 10th National Conference
on Artificial Intelligence, San Jose, CA, USA, July 12-16, 1992. pp. 459–465. AAAI
Press / The MIT Press (1992), http://www.aaai.org/Library/AAAI/1992/aaai92-
071.php

60. Moskewicz, M.W., Madigan, C.F., Zhao, Y., Zhang, L., Malik, S.: Chaff: Engineering
an efficient SAT solver. In: Proceedings of the 38th Design Automation Conference,
DAC 2001, Las Vegas, NV, USA, June 18-22, 2001. pp. 530–535. ACM (2001).
https://doi.org/10.1145/378239.379017

61. Oztok, U., Darwiche, A.: A top-down compiler for sentential decision dia-
grams. In: Yang, Q., Wooldridge, M.J. (eds.) Proceedings of the Twenty-
Fourth International Joint Conference on Artificial Intelligence, IJCAI 2015,
Buenos Aires, Argentina, July 25-31, 2015. pp. 3141–3148. AAAI Press (2015),
http://ijcai.org/Abstract/15/443

62. Pote, Y., Joshi, S., Meel, K.S.: Phase transition behavior of cardinality and XOR
constraints. In: Kraus, S. (ed.) Proceedings of the Twenty-Eighth International Joint
Conference on Artificial Intelligence, IJCAI 2019, Macao, China, August 10-16,
2019. pp. 1162–1168. ijcai.org (2019). https://doi.org/10.24963/ijcai.2019/162

63. Purdom Jr., P.W., Brown, C.A.: An analysis of backtracking with search rearrange-
ment. SIAM J. Comput. 12(4), 717–733 (1983). https://doi.org/10.1137/0212049

64. Pushak, Y., Hoos, H.H.: Advanced statistical analysis of empirical performance
scaling. In: Coello, C.A.C. (ed.) GECCO ’20: Genetic and Evolutionary Compu-
tation Conference, Cancún Mexico, July 8-12, 2020. pp. 236–244. ACM (2020).
https://doi.org/10.1145/3377930.3390210

65. Renkens, J., Kimmig, A., Van den Broeck, G., De Raedt, L.: Explanation-based ap-
proximate weighted model counting for probabilistic logics. In: Brodley, C.E., Stone,
P. (eds.) Proceedings of the Twenty-Eighth AAAI Conference on Artificial Intelli-
gence, July 27 -31, 2014, Québec City, Québec, Canada. pp. 2490–2496. AAAI Press
(2014), http://www.aaai.org/ocs/index.php/AAAI/AAAI14/paper/view/8484

66. Riguzzi, F.: Quantum weighted model counting. In: Giacomo, G.D., Catalá, A.,
Dilkina, B., Milano, M., Barro, S., Bugarín, A., Lang, J. (eds.) ECAI 2020 - 24th Eu-
ropean Conference on Artificial Intelligence, 29 August-8 September 2020, Santiago
de Compostela, Spain, August 29 - September 8, 2020 - Including 10th Conference
on Prestigious Applications of Artificial Intelligence (PAIS 2020). Frontiers in
Artificial Intelligence and Applications, vol. 325, pp. 2640–2647. IOS Press (2020).
https://doi.org/10.3233/FAIA200401

67. Robertson, N., Seymour, P.D.: Graph minors. III. Planar tree-width. J. Comb.
Theory, Ser. B 36(1), 49–64 (1984). https://doi.org/10.1016/0095-8956(84)90013-3

68. Robertson, N., Seymour, P.D.: Graph minors. X. Obstructions to tree-decomposition.
J. Comb. Theory, Ser. B 52(2), 153–190 (1991). https://doi.org/10.1016/0095-
8956(91)90061-N

69. Sang, T., Bacchus, F., Beame, P., Kautz, H.A., Pitassi, T.: Combining component
caching and clause learning for effective model counting. In: SAT 2004 - The
Seventh International Conference on Theory and Applications of Satisfiability
Testing, 10-13 May 2004, Vancouver, BC, Canada, Online Proceedings (2004),
http://www.satisfiability.org/SAT04/programme/21.pdf

70. Sang, T., Beame, P., Kautz, H.A.: Heuristics for fast exact model counting. In:
Bacchus, F., Walsh, T. (eds.) Theory and Applications of Satisfiability Testing,
8th International Conference, SAT 2005, St. Andrews, UK, June 19-23, 2005,
Proceedings. Lecture Notes in Computer Science, vol. 3569, pp. 226–240. Springer
(2005). https://doi.org/10.1007/11499107_17



22 P. Dilkas

71. Sang, T., Beame, P., Kautz, H.A.: Performing Bayesian inference by weighted
model counting. In: Veloso, M.M., Kambhampati, S. (eds.) Proceedings, The
Twentieth National Conference on Artificial Intelligence and the Seventeenth In-
novative Applications of Artificial Intelligence Conference, July 9-13, 2005, Pitts-
burgh, Pennsylvania, USA. pp. 475–482. AAAI Press / The MIT Press (2005),
http://www.aaai.org/Library/AAAI/2005/aaai05-075.php

72. Sharma, S., Roy, S., Soos, M., Meel, K.S.: GANAK: A scalable probabilistic exact
model counter. In: Kraus, S. (ed.) Proceedings of the Twenty-Eighth International
Joint Conference on Artificial Intelligence, IJCAI 2019, Macao, China, August 10-16,
2019. pp. 1169–1176. ijcai.org (2019). https://doi.org/10.24963/ijcai.2019/163

73. Van den Broeck, G., Taghipour, N., Meert, W., Davis, J., De Raedt, L.: Lifted
probabilistic inference by first-order knowledge compilation. In: Walsh, T. (ed.)
IJCAI 2011, Proceedings of the 22nd International Joint Conference on Artifi-
cial Intelligence, Barcelona, Catalonia, Spain, July 16-22, 2011. pp. 2178–2185.
IJCAI/AAAI (2011). https://doi.org/10.5591/978-1-57735-516-8/IJCAI11-363

74. Vlasselaer, J., Meert, W., Van den Broeck, G., De Raedt, L.: Exploiting local and
repeated structure in dynamic Bayesian networks. Artif. Intell. 232, 43–53 (2016).
https://doi.org/10.1016/j.artint.2015.12.001

75. Xu, J., Zhang, Z., Friedman, T., Liang, Y., Van den Broeck, G.: A semantic
loss function for deep learning with symbolic knowledge. In: Dy, J.G., Krause,
A. (eds.) Proceedings of the 35th International Conference on Machine Learn-
ing, ICML 2018, Stockholmsmässan, Stockholm, Sweden, July 10-15, 2018. Pro-
ceedings of Machine Learning Research, vol. 80, pp. 5498–5507. PMLR (2018),
http://proceedings.mlr.press/v80/xu18h.html

76. Xu, L., Hutter, F., Hoos, H.H., Leyton-Brown, K.: SATzilla: Portfolio-
based algorithm selection for SAT. J. Artif. Intell. Res. 32, 565–606 (2008).
https://doi.org/10.1613/jair.2490


