Designing Samplers 1s Easy: The Boon of Testers

Priyanka Golia
Indian Institute of Technology Kanpur
National University of Singapore

Mate Soos
National University of Singapore

Sourav Chakraborty
Indian Statistical Institute, Kolkata

Kuldeep S. Meel

National University of Singapore

Abstract—Given a formula ¢, the problem of uniform sampling
seeks to sample solutions of ¢ uniformly at random. Uniform
sampling is a fundamental problem with a wide variety of ap-
plications. The computational intractability of uniform sampling
has led to the development of several samplers that heavily rely
on heuristics and are not accompanied by theoretical analysis
of their distribution. Recently, Chakraborty and Meel (2019)
designed the first scalable sampling tester, Barbarik, based on
a grey-box sampling technique for testing if the distribution,
according to which the given sampler is sampling, is close to
the uniform or far from uniform. While the theoretical analysis
of Barbarik provides only unconditional soundness guarantees,
the empirical evaluation of Barbarik did show its success in
determining that some of the off-the-shelf samplers were far from
a uniform sampler.

The availability of Barbarik has the potential to spur de-
velopment of samplers techniques such that developers can
design sampling methods that can be accepted by Barbarik
even though these samplers may not be amenable to a detailed
mathematical analysis. In this paper, we present the realization
of this aforementioned promise. Based on the flexibility offered
by CryptoMiniSat, we design a sampler CMSGen that promises
the achievement of sweet spot of the quality of distributions and
runtime performance. In particular, CMSGen achieves significant
runtime performance improvement over the existing samplers.
We conduct two case studies, and demonstrate that the usage of
CMSGen leads to significant runtime improvements in the context
of combinatorial testing and functional synthesis.

A salient strength of our work is the simplicity of CMSGen,
which stands in contrast to complicated algorithmic schemes
developed in the past that fail to attain the desired quality of
distributions with practical runtime performance.

I. INTRODUCTION

Given a formula ¢, the problem of uniform sampling
seeks to sample solutions of ¢ uniformly at random. Uniform
sampling has emerged as an essential technique in the con-
text of constrained-random simulation [33], constraint-based
fuzzing [5], [19], [22], configuration testing [13], [23], bug
synthesis [36], and the like. For example, in the context of
constrained-random simulation, uniform sampling is employed
to generate test cases that satisfy the set of constraints encod-
ing domain knowledge from sources such as designers, end-
users, and the like.

The widespread applications of uniform sampling have led
to several algorithmic proposals over the years with varying
theoretical guarantees and empirical scalability. Chakraborty,
Meel, and Vardi introduced the first practical almost-uniform
sampler, UniGen [11], [12], which has since been improved

to UniGen3 [9], [39]. Recently, Sharma et al. proposed a
knowledge compilation-based approach [37], called KUS, that
can perform uniform sampling. While UniGen3 and KUS can
scale to hundreds of thousands of variables for some problems,
their performance still falls short of the desired scale for some
real-world instances. The need for scalability has led to the
development of several tools that seek to achieve scalability
at the cost of theoretical guarantees. The underlying techniques
for such tools cover a broad spectrum ranging from adapted
BDD-based techniques [26], random seeding of DPLL-based
SAT solvers [32], Markov Chain Monte Carlo-based (MCMC)
methods [24], [43], interval propagation and belief networks-
based methods [14], [20], MaxSAT-based techniques [16].

The lack of guarantees for various samplers leads their
designers to illustrate the quality of samples generated via
computation of statistics for generated distributions over a
small set of benchmarks. Such demonstrations, however, do
not generalize to many classes of benchmarks, and it is often
the case that subsequent studies tend to demonstrate cases
where previously proposed samplers generate distributions
far away from uniform. While the theoretical guarantees of
uniformity can be viewed as a holy grail, much of the
software engineering progress owes to the development of
testing methodologies. These methodologies employed both to
validate the system and find bugs by the developers themselves
in the form of test-driven development (TDD) and to build
trust with the end-users; all without requiring the developers
to supply a formal proof of correctness.

A major contributing factor to the dramatic improvement
in the robustness and scalability of SAT solvers has been the
development of the DRAT proof format and associated proof
checker drat-trim [44]. The availability of drat-trim allows
SAT solver developers to find bugs that would be hard to
discover owing to the complex architecture of state-of-the-art
SAT solvers. While the problem of checking whether a given
formula is UNSAT is merely Co-NP, the problem of testing
whether a sampler is a uniform requires 2(2") samples given
black-box access to the sampler [3], [8], where n is the number
of variables.

Recently, Chakraborty and Meel proposed the first scal-
able sampler test framework, Barbarik [8]. This framework
distinguishes whether the distribution generated by the given
sampler is e-close to uniform (Accept) or n-far from uniform
(Reject), while the number of samples required depends only

on ¢ and 7, and is independent of n. The core idea of the
Barbarik is to reduce testing of uniformity over the entire
solution space of ¢ to the testing of uniformity over solutions
space of another formula, ¢ constructed over two randomly
chosen solutions of ¢ (observe that ¢ —). The subroutine
to construct ¢ is called Kernel. The analysis of Barbarik states
that if Barbarik Rejects a sampler, the distribution generated
by sampler is indeed (probabilistically) far from uniform, but
if Barbarik Accepts a sampler, the sampler’s distribution is
close to uniform under the assumption of non-adversality with
respect to Kernel. Informally, the non-adversality assumption
with respect to Kernel dictates that given ¢, the conditional
distribution of the sampler over the solutions of ¢ is same as
the distribution of the sampler with ¢ as input. Note that this
allows some samplers to behave in an adversarial manner, i.e.,
such samplers may not generate uniform distribution over ¢,
however may generate uniform distributions for ¢. In such a
case, causing Barbarik will return Accept for such samplers.
At this point, it is worth remarking that given the strong lower
bounds on black-box testing, the usage of such an assumption
is a practical necessity.

Empirically, Barbarik was able to return Reject for all
the state of the art samplers without rigorous mathematical
analysis certifying (almost)-uniformity of the generated dis-
tributions. In particular, Barbarik was demonstrated to Accept
UniGen3 while rejecting the state of the art samplers STS [18]
and QuickSampler [16]. It is worth noting that the three
samplers, UniGen3, QuickSampler, and STS, were found to be
statistically indistinguishable by the usage of simple metrics
such as KL-divergence [27] after a small number of samples.

The availability of Barbarik, however, has potential to allow
development of samplers, whose algorithmic frameworks may
not be amenable to mathematical analysis but can be accepted
by Barbarik. The primary contribution of this paper is realiza-
tion of the promise of Barbarik via development of a new state
of the art sampler, CMSGen. In particular, we make following
contributions:

A. CMSGen: A State of the Art Sampler

1) We design a new sampler, CMSGen, by modifying the
existing state-of-the-art Conflict-Driven Clause Learning
(CDCL) SAT solver CryptoMiniSat! [41].

2) Since understanding the behavior of CDCL itself is an
open problem, we can not provide an unconditional
analysis of the distribution produced by CMSGen. We
rely on the availability of Barbarik, and observe that
surprisingly, Barbarik returns Accept for all the bench-
marks. Barbarik’s failure to Reject CMSGen stands in
sharp contrast to its ability to Reject other samplers
without guarantees, such as QuickSampler. Furthermore,
we perform empirical comparisons of runtime perfor-
mance via-a-vis UniGen3, the state-of-the-art sampler
with theoretical guarantees. We observe that CMSGen

! Available at https://github.com/msoos/cryptominisat

significantly improves upon UniGen3 in terms of runtime
performance.

B. Case Studies: Combinatorial Testing and Functional Syn-
thesis

3) At this point, one may wonder whether there are practical
applications of CMSGen. We next focus on applications
that are beyond the reach of UniGen3, and for such
cases, one has to rely on the heuristics-based samplers. In
particular, we perform two case studies: (1) combinatorial
testing, and (2) functional synthesis; two problems with
a long history of sustained interest in formal methods
and software engineering community. For both the case
studies, we observe that the usage of CMSGen leads to
significant performance improvements in comparison to
usage of other competing samplers UniGen3 and Quick-
Sampler.

It is worth remarking that a salient strength of CMSGen is
the simplicity of its design. We find it exciting that a sampler
with such a simple design could outperform sophisticated
state of the art samplers. Based on our empirical analysis,
one would remark that CMSGen aims to achieve the sweet
spot of scalability and uniformity. In particular, CMSGen
is significantly more scalable than samplers with guarantees
and, at the time, achieves distributions of higher quality
than samplers without guarantees. The runtime performance
combined with the quality of distribution as certified by
Barbarik makes CMSGen the ideal choice for applications
such as combinatorial testing and functional synthesis where
scalability and quality of distribution are equally crucial.

The rest of the paper is organized as follows: In Section II,
we present the formal definitions and also present a brief
description of the sampler verifier Barbarik. In Section III
we present the new sampler CMSGen and in Section IV we
present the evaluation of CMSGen both by comparing its
runtime performance with other samplers and also its perfor-
mance against Barbarik. Then in Section V we demonstrate
the usefulness of CMSGen with two case studies on problems
of fundamental importance to formal methods community:
functional synthesis and combinatorial testing. Finally, we
conclude in Section VI.

II. NOTATION AND BACKGROUND

A literal is a Boolean variable or its negation. Let ¢ be
a Boolean formula in conjunctive normal form (CNF), and
let X be the set of variables appearing in ¢. The set X
is called the support of o, denoted by Supp(y). Given an
array a, afi : j] represents the sub-array consists of all the
elements of a between indices ¢ and j. A satisfying assignment
or witness, denoted by o, is an assignment of truth values
to variables in its support such that ¢ evaluates to true. A
satisfying assignment is also represented as a set of literals. For
S C Supp(p), we use o g to indicate the projection of o over
the set of variables S. We denote the set of all witnesses of ¢
as sol((p). For notational convenience, whenever the formula

https://github.com/msoos/cryptominisat

o and/or the set S C Supp(y) is clear from the context, we
omit mentioning them.

A. Samplers

Definition 1: Given a Boolean formula ¢, a CNF-sampler
(or simply sampler) G of ¢ is a probabilistic algorithm that
generates a random element in sol(y). We will assume that a
sampler takes as input a CNF-formula ¢, a set S C Supp(y)
and an integer k. It generates k elements oy,...,0; from
sol(¢) and outputs 0y g, ...,0k 5. When the integer k& and
the set S C Supp(p) is clear from the context (or is not
important) we will drop them and use G(y) or G(y,S) to
denote the sampler.

We use pg(p, o) (or pg(p,c,S)) to denote the probability
that G(p, -, -) (or G(¢p, S, -)) generates o (or os). And, we use
Dg(,) (and Dg(,, s)) to denote the distribution induced by G
over the set sol(¢) (and sol(y),s). For a set T C sol(p), we
use Dg () T to denote the distribution Dg(,,y conditioned on
set T'.

Definition 2: Given a Boolean formula ¢, A uniform sam-
pler G*(¢p) is a sampler that given (¢ guarantees

Yy € sol(p),PriG“(p) = y] = 1/|sol(y)], (L

Definition 3: Given a Boolean formula ¢ and tolerance pa-
rameter &, GA4Y (¢, €) is an additive almost-uniform generator
(AADU) if the following holds:

<Pr[gHU(p)=y < 1 E

1—¢
|sol(¢)] = [sol(y)|
(2)

A sampler is allowed to occasionally “fail” in the sense that
no element may be returned even if sol(y) is non-empty. The
failure probability for such generators must be bounded by a
constant strictly less than 1.

Definition 4: Given a Boolean formula ¢ and an intolerance
parameter 7 an generator G(¢p,.) is n-far from uniform gen-
erator if the /;-distance (or, twice the variation distance) of
Dg(w) from uniform is at least 7. That is,

1
2.

seoalto) |sol ()]

Yy € sol(p),

PG(p,z) — =1

B. Sampler Tester

Given a sampler G, one would like to test if the sampler is
indeed correct. Or in other words, one would like to test the
following:

1) Does the sampler always output a satisfying assignment?

2) On any CNF-formula ¢, is G(y) an additive almost-
uniform generator?

While the first point is very easy to test, testing the second
point is quite challenging. Standard verification techniques
or black box sampling techniques would need exponential
time/samples and thus are very inefficient.

Chakraborty and Meel [8] designed the tester Barbarik that
would accept if the sampler is an additive almost-uniform
generator on any input and reject if the sampler is far from
a uniform generator on some input under certain assumptions

discussed below. The idea of Barbarik comes from the world
of property testing, where the sample complexity for testing
whether a distribution is a uniform is studied. While it was
known from classical sample complexity [3] that an exponen-
tial number of samples are required to distinguish a uniform
distribution from a distribution that is »-from uniform, in [7] it
was observed that if given access to conditional samples only
a constant number of samples suffice. Conditional samples
from a distribution D means for a subset 7' of the domain
(), drawing samples from the conditional distribution D7
The algorithm for checking whether a given distribution D
over domain € is uniform or n-far from uniform, consists of
following steps:

1) Draw one sample o according to the distribution D.

2) Draw one sample o5 according to the uniform distribution

over).

3) Check if the distribution D)7 is uniform or “far’-from

uniform, where T' = {01, 02}.

The last point of the above algorithm can be performed
using only a constant number of conditional samples. It can
also be shown that the above algorithm, with non-trivial
probability, will Accept if D is uniform and Reject if D is n-
far from uniform, by repeating this algorithm a certain number
of times, one can boost the success probability.

While the algorithm is theoretically interesting, applying it
to design a sampler test framework required several hurdles to
cross. Firstly, for Step 2 of the algorithm, one needs to run a
uniform sampler. This is not too much of a hurdle as one can
use a non-efficient uniform sampler, since the sampler tester
is only to be used a few times to certify if a sampler is good.

The second problem is that the algorithms, as such, could
only distinguish between a uniform distribution, and a dis-
tribution “far” from a uniform distribution, while a sample
tester should also Accept samplers that are “close” to uniform
samplers (and not necessarily just uniform samplers).

Finally, the main concern was how to obtain conditional
samples. In [8] this was achieved by constructing a new
formula ¢ on a larger number of variables such that the
satisfying assignments of ¢ restricted to the original set of
variables is either o1 and o5. In fact if S = Supp(y), then

1

[oys = 03] = 3

where U (sol(¢) denotes uniform distribution over sol(¢) The
new formula ¢ is obtained from ¢ by using a subroutine
Kernel that uses the chain formula technique from [10].

The goal of the construction of ¢ is such that the following

two conditions are satisfied:

1) If the sampler G(p) was e-additive almost-uniform gen-
erator then the distribution Dg(s) is “close” to the
uniform distribution on the set {01, 02}

2) If the sampler G(y) was n-far from the uniform sampler
in the ¢; distance then the distribution Dy, g) is “far”
from the uniform distribution on the set {o1,02}.

Now, if the sampler G is additive almost-uniform generator

on any input ¢ the first condition would be satisfied. But

loys =01] =

Pr Pr
o~U(sol(4)) o~U(sol($))

for the second condition to hold some more assumptions
are necessary. This assumption is called the non-adversarial
assumption in [8].

Definition 5: The non-adversarial sampler assump-
tion states that if (»,S) is the output obtained from
Kernel(y, S, 01,09, N) then

«SCS

o the output of G(4,S,N) is N independent samples

from the conditional distribution Dg,, 5|, Where T' =
{O‘ 1,0‘2}.

Thus Barbarik has the following guarantees.

Theorem 1: Given a sampler G, tolerance parameter e,
intolerance parameter 7 and correctness parameter 9,

1) If for all ¢, G(yp) is e-additive almost-uniform generator
then Barbarik will Accept with probability (1 — §).

2) If for some ¢ the sampler G(y) is n-far from the uniform
sampler in the ¢; distance and the sampler satisfies the
non-adversarial sampler assumption then Barbarik will
Reject with probability (1 — J).

For the implementation, the subroutine Kernel is designed
in an attempt to fool the sampler into satisfying the non-
adversarial assumption. The idea being that the new CNF-
formula ¢ would be “hard” to distinguish from ¢ and hence
one would expect

pg(%ahs)
pg(@ao—lvs) +pg(§070275)

pg((ﬁ,Ul,S) =

C. Experimental Setup

All our experiments were conducted on a high-performance
computer cluster with each node consisting of a E5 — 2690 v3
CPU with 24 cores and 96GB of RAM, with a memory limit
set to 4GB per core.

I1I. FROM CryptoMiniSat To CMSGen

The naive technique to design a sampler is to pick a random
assignment of variables, check if it satisfies the CNF formula,
and, if so, output the assignment as a witness; otherwise, pick
another random assignment and start over again. Using an
unbiased random coin for the assignments, it is trivial to see
that the technique leads to a uniform sampler. Such a proposal
is, however, very inefficient as with a very high probability,
every picked assignment is likely not to satisfy the formula.

One way to make such a sampler into an efficient one is by
not starting with a complete assignment but build the partial
assignment up the variable by variable, set all variables that
are implied by the current partial assignment, and if a partial
assignment is incorrect, record and learn from the failure. The
concept of learning from failure is captured by the well-known
conflict-driven clause-learning (CDCL) framework used by
most state-of-the-art SAT solvers. We refer the reader to Chap-
ter 4 of [4] for a detailed exposition on CDCL. We present
an extension that seeks to combine the CDCL framework
with randomization in the choice of partial assignments in
Algorithm 1, called UniformLikeWitness. UniformLikeWitness
is essentially a randomized variation on the CDCL framework,

with a randomized heuristic for what variable to assign next,
a randomized heuristic for variable polarities, and without
restarts.

Algorithm 1 UniformLikeWitness(F, seed)

1: while true do

2 Z < pick an unassigned variable at random

3 assigns|x] < pick 0 or 1 uniformly at random
4 conflict,assigns < perform unit propagation
5: if assigns is full then return assigns
6

7

8

9

if conflict is found then
back_lIvl, conf_clause < Conflict-Analysis [32]
if conf_clause is empty then return NULL
: Update assigns as per back_|vl
10: F + F U conf_clause
11: if F is too large then
12: Perform Learnt Clause Deletion [2]

One major problem of the above process is that the sampler,
just like an SAT solver, may get stuck in the corner of the
space where there are no satisfying solutions. Once stuck, it
can take much time to record the relevant conflicts before it can
escape this part of the search space. In modern SAT solvers,
such an escaping is enabled by performing restarts. The idea
of a restart is to stop the current search procedure, keeping
conflict clause and heuristic data such as polarities, variable
activities in the line, but otherwise starting afresh, resetting
the assignment state. The idea of performing a restart is to
reduce the chance of getting stuck in a non-fruitful part of the
search space. Performing regular, frequent restarts is a core
component of all state-of-the-art SAT solvers.

CMSGen 2 is a sampler that exploits the flexi-
bility CryptoMiniSat to implement the behaviour of
UniformLikeWitness. We use the restart policy based on the
number of conflicts, i.e., we perform a restart after the pre-
determined number of conflicts, which is set to 100. Hence,
the final set of options passed to CryptoMiniSat turn off
the features unrelated to CDCL (such as bounded variable
elimination [17], local search [6], or symmetry breaking [15]),
and set the options that control variable branching and polarity
picking to match Algorithm 1, and set the restart interval to
100. Note that while it is possible that other CDCL SAT
solvers could be adjusted to generate samples as well as
CMSGen, the newer and more performant glucose-based SAT
solvers [2] tend to be highly tuned without any command-line
options to change or turn off heuristics.

We would like to emphasize that we do not claim that
CMSGen is expected to generate uniform distributions over
all the formulas as it is possible to construct worst case
scenarios where CMSGen would not work well. At this point,
it is worthwhile to note that, to the best of our knowledge,
the current techniques are insufficient to analyse the kind of
formulas for which UniformLikeWitness would behave like

2CMSGen is available at https:/github.com/meelgroup/cmsgen

https://github.com/meelgroup/cmsgen

a uniform sampler given their limitations to understand the
behaviour of CDCL itself. Traditionally, the proposal of a new
sampler is accompanied by theoretical analysis, but in our
case, we seek to rely on the testing framework of Barbarik
to analyse the behavior of CMSGen.

IV. THE POWER OF CMSGen

As mentioned above, instead of taking a conventional route
focusing on the theoretical analysis of CMSGen, we seek
to employ Barbarik to test whether CMSGen is a uniform
sampler or not. In addition, we seek to understand the runtime
behavior of CMSGen in comparison to other state of the art
techniques. We conducted an extensive evaluation of diverse
public domain benchmarks employed in prior studies [8], [40].

A comment on the choice of benchmarks for the two studies:
For the first study, we selected the same 50 benchmarks that
were employed in the evaluation of Barbarik so as to situate the
results with prior context [8]. Since Barbarik needs to sample
up to 1.835 x 10® solutions, the choice of benchmarks in [8]
was restricted to instances for which generating samples is
easy. On the other hand, these benchmarks are not meaningful
for runtime performance comparison as all the tools finish on
them very quickly. To this end, we relied on 70 benchmarks
employed in prior sampling studies [38], [39] for runtime
performance comparison.

The objective of our evaluation was two-fold:

RQ1 To understand the behavior of Barbarik in terms of the
frequency of outputs Accept and Reject with CMSGen
as sampler under test.

RQ2 To evaluate the runtime performance of CMSGen vis-a-
vis the state of the art sampler with guarantees of almost-
uniformity, UniGen3.

In summary, we observe that Barbarik, somewhat surpris-
ingly, returns Accept for CMSGen and UniGen3 on all the
50 instances while returning Reject for all the 50 instances
for QuickSampler [16], and for 36 instances for STS [18],
the state-of-the-art samplers without guarantees. At the same
time, comparison in terms of runtime for over 70 benchmarks
arising from different application domains, we observe that
CMSGen is significantly faster than UniGen3.

A. Testing CMSGen with Barbarik

For experimentation evaluations with Barbarik, we used the
default parameters suggested by the authors: In particular,
we set tolerance parameter €, intolerance parameter 7, and
confidence § to be 0.3, 1.8, and 0.1 respectively. For our
chosen parameters, the number of samples required to return
Accept for a given sampler under test is 1.836 x 103, and
to maintain consistency with evaluation setup of Barbarik, we
selected benchmarks (50 in total) that were used in evaluation
of QuickSampler and UniGen3 for which Barbarik terminates
within 2 hours. To test uniformity of distributions generated
by CMSGen and other samplers, we employed Barbarik aug-
mented with SPUR [1] as the underlying uniform sampler.
We present the results of our evaluation in Table I, where the
four columns present results corresponding to QuickSampler,

TABLE I: Analysis of different samplers with Barbarik over 50
benchmarks. Parameters € : 0.3,7 : 1.8,§ : 0.1, and samples
required to return Accept 1.836 x 103.

QuickSampler STS UniGen3 CMSGen
Accept 0 14 50 50
Reject 50 36 0 0

STS, UniGen3, and CMSGen respectively. The first and second
rows indicate the number of instances for which Barbarik
returned Accept and Reject respectively. We first note that
while Barbarik returned Reject for QuickSampler and STS
for the 50 and 36 instances respectively, it returned Accept for
both CMSGen and UniGen3 for all the instances. It is worth
highlighting that UniGen3 provides guarantees of almost-
uniformity.

Remark 1: At this point, it is worth highlighting that we
arrived at the choice of parameters of CMSGen, such as when
to restart via an iterative process where we would run Barbarik
for the given choice of parameters and change them based on
the number of instances rejected by Barbarik. In this context,
it is rather encouraging that such an iterative process led us to
design a sampler, CMSGen, which could not be distinguished
from UniGen3 by Barbarik while significantly improving upon
UniGen3 in terms of runtime performance. This highlights the
advantages of a TDD-style design approach.

B. Runtime Comparison

Upon observing that Barbarik returns Accept for all the 50
instances for both CMSGen and UniGen3, a natural question is
whether the runtime performance of CMSGen is comparable
to that of UniGen3. To this end, we compared CMSGen with
UniGen3, STS and QuickSampler on 70 benchmark instances
arising from a wide range of application areas of uniform
sampling, such as probabilistic reasoning, Bounded Model
Checking [37], [40]; these instances had been previously
employed in empirical studies focused on the comparison of
sampling techniques [38], [39].

For each of the instances, we invoke each of the sampler
to generate 1000 solutions within a timeout of 7200 seconds.
Figure 1 shows the cactus plot for CMSGen, UniGen3, STS
and QuickSampler. We present the number of benchmarks on
the x-axis and the time taken on the y-axis. A point (z,y)
implies that for a benchmark, the sampler took less than or
equal to y seconds to generate 1000 solutions of x. With a
timeout of 7200 seconds, UniGen3 and CMSGen were able to
sample 1000 solutions of 51 and 52 benchmarks respectively,
whereas STS and QuickSampler generated samples for merely
37 and 33 instances respectively. Figure 1 clearly shows that
for all the benchmarks that were sampled 1000 times by both
UniGen3 and CMSGen, CMSGen outperformed UniGen3 with
a geometric speedup of over 420x.

Table II represent the runtime performance for QuickSam-
pler, STS, UniGen3 and CMSGen for a representative set of 20
benchmarks. As shown in Table II, there are instances (18 out
of 70) for which UniGen3 is able to samples 1000 solutions

7000 1+

©o— CMSGen

¥— UniGen3]/(
6000 4|~ STS

#— QuickSampler r_[B ,w/\ﬁ
5000 -

4000

V*}
3000 -

2000

Runtime

1000 - oo

g s
Jai %A o’ 7

0 l‘() 20 30 40 50 60 70
Benchmarks

Fig. 1: Cactus plot showing runtime performance of UniGen3,
STS, QuickSampler and CMSGen to generate 1000 samples.
Timeout: 7200s

TABLE II: Runtime performance of different samplers to
generate 1000 solutions for a representative set of benchmarks.
Timeout (TO): 7200s.

Benchmarks QuickSampler STS UniGen3 CMSGen
or-70-5-5-UC-20 0.07 36.39 3173.45 0.29
or-60-20-10-UC-20 0.07 43.53 4065.0 0.31
or-100-20-8-UC-40 0.09 51.25 2152.01 0.4
tire-2 1.09 226.01 TO 0.48
or-50-10-7-UC-10 0.06 33.28 2196.98 0.95
b12_2_linear TO 1214.73 1520.01 2.08
b14_2_linear TO 926.18 1220.01 2.18
squaring41 TO 5595.0 6002.0 2.8
squaring60 TO TO TO 4.52
$15850a_15_7 359.37 TO 675.33 5.58
b12_even2_linear TO TO TO 15.52
isolateRightmost TO TO 432.73 21.66
modexp8-5-4 TO TO 6122.0 550.9
modexp8-6-4 TO TO TO 1034.27
modexp8-6-3 TO TO 6624.0 1079.82
modexp8-6-8 TO TO TO 1173.64
prod-20 TO TO 1274.42 TO
04B-1 TO 5598.0 2410.61 TO
06B-1 TO 6449.0 2835.64 TO
hash-10-7 TO TO 5610.0 TO

whereas CMSGen could not sample. Similarly, there are 19
instances for which CMSGen is able to samples solutions but
UniGen3 could not.

V. CASE STUDIES: FUNCTIONAL SYNTHESIS AND
COMBINATORIAL TESTING

Having established that the quality of distribution generated
by CMSGen is significantly better than QuickSampler, one
wonders about the practical utility of CMSGen. The significant
gap between runtime performance of CMSGen and UniGen3
argues for the usage of CMSGen in applications where the
quality and runtime performance of samplers are key deter-
mining factors.

To this end, we focused on two such application domains:
Combinatorial testing and Boolean functional synthesis. The

state of the art techniques for each of these domains crucially
rely on underlying uniform samplers; in fact the sampler
QuickSampler was proposed in the context of combinatorial
testing. For each of these case studies, we substitute the three
samplers CMSGen, QuickSampler, and UniGen in the state
of the art techniques, and analyse their performance on the
resulting tool.

A. Combinatorial Testing

Combinatorial testing is considered as a powerful paradigm
for testing configurable software. The primary task of a test
generator is the generation of a test suite that maximizes t-wise
coverage. t-wise coverage is measured as the fraction of feature
combinations appearing in the test set out of the possible valid
feature combinations. Uniform sampling is considered one of
the promising approach to have higher t-wise coverage [31],
[34], [35]. Therefore, a natural question is whether CMSGen
can serve as a good test suite generator. To this end, we
performed a comparative study of CMSGen vis-a-vis UniGen3,
STS and QuickSampler on the set of 110 publicly available
benchmarks that have been employed in prior comparative
studies of sampling techniques in the context of combinatorial
testing [25], [29], [35]3.1t is worth emphasizing that UniGen3,
STS and QuickSampler are viewed as a state of the art test
suite generation techniques in the presence of constraints as
witnessed by empirical study by Plazar et al. [35].

In our comparative study of sampling techniques of their
efficiency in achieving higher ¢-wise coverage, we focus on
the case of ¢ = 2 as is standard in the most empirical studies
in combinatorial testing. To this end, for every benchmark,
we generate 1000 samples from each of the four samplers:
CMSGen, STS, QuickSampler, and UniGen3. We used a
timeout of 3600 seconds for sampling. UniGen3 is, however,
unable to sample for all but six benchmarks. Therefore, we
exclude UniGen3 from further analysis.

¢ CMSGen * STS * QuickSampler
100 A 3
. .
-
90 1
Cescecs
80]

e
® 70 . %
1)

o
o
[4
2 %971 ..
© % o . .. D . . *
" had ...l.l o 06 w ® . . % —.‘ ..‘ln !...“ LX) ...-..‘
50 4 _....-. . e St R ae .
° .
40 4
301 °
1 20 40 60 80 100 120

Benchmarks

Fig. 2: Plot to show 2-wise coverage% for 110 benchmarks
with 1000 samples. Sampling timeout: 3600s.

3Benchmarks are available at https:/zenodo.org/record/4022395

https://zenodo.org/record/4022395

TABLE III: Analysis for 2-wise coverage with QuickSampler, STS, and CMSGen.

Benchmark # Fez{tur@ QuickSampler STS CMSGen
Combinations L S .
combination C # combination C # combination C
observed overage observed overage observed overage

busybox_1_28_0 1965023 513565 0.26 1849127 0.94 1964962 1.0
ecos-icsell 2910229 898195 0.31 2104721 0.72 2910078 1.0
financial 917150 392381 0.43 649279 0.71 876356 0.96
buildroot 621270 278254 0.45 613184 0.99 621252 1.0
vads 2896324 1360422 0.47 2348489 0.81 2895931 1.0
mpc50 2719748 1354164 0.5 2078077 0.76 2719508 1.0
XSEngine 2974825 1498239 0.5 2383688 0.8 2974448 1.0
ocelot 2986129 1519047 0.51 2344079 0.78 2986002 1.0
dreamcast 2908040 1523501 0.52 2253050 0.77 2907734 1.0
refidt334 3022264 1557688 0.52 2356854 0.78 3021978 1.0
integrator_arm7 2957100 1566676 0.53 2275664 0.77 2956958 1.0
pc_i82559 2977432 1582402 0.53 2384286 0.8 2977280 1.0
p2106 2887921 1544728 0.53 2282100 0.79 2887653 1.0
skmb91302 2755776 1451902 0.53 2133950 0.77 2755538 1.0
cma28x 2694432 1419911 0.53 2156230 0.8 2694257 1.0
ipaq 2897450 1576622 0.54 2305020 0.8 2897153 1.0
axtls 16212 9381 0.58 15264 0.94 16212 1.0
uClinux 3013528 1751212 0.58 3013456 1.0 3013528 1.0
toybox 256494 180332 0.7 246484 0.96 256494 1.0
FM-3.6.1-refined 3151 2518 0.8 3075 0.98 3151.0 1.0

Figure 2 shows the experimental results with STS, Quick-
Sampler and CMSGen. We present the number of benchmarks
on the x-axis and pair-wise coverage % on the y-axis. A
point (x,y) implies that x benchmarks had y% pair-wise
coverage. Benchmarks are ordered in the decreasing order
of coverage achieved with the samples produced by STS.
Figure 2 shows that almost all the benchmarks had nearly
100% pair-coverage with samples generated by CMSGen, on
the other hand, the average pair-wise coverage with samples
from QuickSampler and STS is 51.5% and 80.15%. One
should view the significant performance improvement due
to CMSGen over QuickSampler in light of the fact that the
primary motivation behind the proposal of QuickSampler was
to achieve higher coverage.

Table III represents the analysis for 2-wise coverage with
CMSGen, STS and QuickSampler for representative 20 bench-
marks. In table III, Column 2 present the possible valid
feature combinations. Column 3, 5 and 7 present the feature
combinations appearing in test set generated by QuickSampler,
STS and CMSGen respectively, and Column 4,6 and 8 is for
the corresponding coverage. As shown in Table III, the test set
generated with CMSGen is able to cover all possible feature
combinations for all the benchmarks.

B. Boolean Functional Synthesis

Given a formula JY F(X,Y), the problem of Boolean
functional synthesis seeks to compute a function ¢ such that
FYF(X,Y) = F(X,¢(X)). Typically, we view F as a speci-
fication and ¢ as the function that implements the specification
. Boolean functional synthesis is a fundamental problem with
wide variety of applications ranging from logic synthesis [28],
cryptography [30], program synthesis [42], and the like. For
example, Boolean functional synthesis encompasses program
synthesis, where ¢ can be viewed as the desired program.

Consequently, there has been a sustained interest in the design
of efficient algorithmic techniques for Boolean functional
synthesis. The current state of the art approach, Manthan,
was proposed recently and builds on the advances in sampling
techniques, automated reasoning, and machine learning [21].
Manthan was demonstrated to solve 70 more benchmarks than
the next best technique. In this regard, Manthan serves as a
good test-bed to compare different sampling techniques.

7000

—o— CMSGen
QuickSampler T

STS

UniGen3

——

6000

——

5000

2000

1000

200
Benchmarks

150 300 350 400
Fig. 3: Cactus plot to show the impact of different sampler

on functional synthesis engine, Manthan. Timeout: 7200s

We sought to compare CMSGen vis-a-vis UniGen3, STS
and QuickSampler in their impact on the performance of
Manthan. We set the timeout of 3600 seconds for the sampling
phase of Manthan. To this end, we augment the sampling step
of Manthan with the corresponding samplers. We perform the
empirical analysis of the same 609 benchmarks* that were
employed in the analysis of Manthan [21]. We present a

4Benchmarks are available at https://zenodo.org/record/3892859

https://zenodo.org/record/3892859

summary of our analysis in the form of cactus plot in Figure 3:
the number of instances are shown on the x-axis and the
time taken on the y-axis; a point (x,y) implies that Manthan
augmented with the corresponding sampler took less than or
equal to y seconds to solve x instances.

Table IV shows the time taken to synthesize Boolean
functions with samples generated from different samplers for
a representative set of 20 benchmarks.

Few observations are in order:

1) Manthan augmented with UniGen3 could solve only 118

instances due to UniGen3’s inability to sample for all but
220 instances. Similarly, Manthan with STS could solve
only 157 instances.

2) Manthan augmented with CMSGen solves 345 instances

while Manthan augmented with QuickSampler could
solve only 275 instances.

TABLE IV: Runtime analysis of Manthan with QuickSampler,
STS, UniGen3, and CMSGen. Timeout (TO): 7200s.

Benchmarks QuickSampler STS UniGen3 CMSGen
kenflashp02 9.55 1367.12 573.69 26.77
kenoopp1 25.96 1852.07 TO 28.88
bobsynthOOneg 114.66 3621.66 TO 74.06
bobtuint04neg 58.62 3636.39 1276.1 109.29
small-swap1-fix-4 TO TO TO 148.15
pdtpmsrotate32 TO TO TO 279.6
exquery_query42 254.17 TO TO 281.5
GuidanceService2 529.16 TO TO 290.71
subtraction256 699.09 3836.48 TO 321.35
IssueServiceImpl 1567.23 TO TO 424.77
query55_query42 6488.93 TO TO 766.98
rankfunc48_s_64 TO TO TO 775.42
sortnetsort7.006 732.42 TO TO 785.13
LoginService TO TO TO 1108.0
query30_query42 1134.6 TO TO 1126.53
ethernet-fixpoint-4 TO TO TO 1752.18
query44_query26 TO TO TO 2037.54
small-equiv-fix-8 TO TO TO 2231.22
pi-fixpoint-2 535.74 3674.9 TO 2373.72
sortnetsort9.010 3795.4 TO TO 4414.56

Therefore, in conclusion, Manthan augmented with
CMSGen solves significantly more instances than Manthan
augmented with UniGen3, STS, or QuickSampler.

VI. CONCLUSION

Motivated by the availability of Barbarik, a tester for
samplers, we sought to design a sampler for which Barbarik
would return Accept. We succeeded in our task by a simple
but careful tweaking of the existing state-of-the-art SAT solver,
CryptoMiniSat. Our resulting sampler CMSGen is not only
accepted by Barbarik but achieves better runtime performance
than state-of-the-art samplers with theoretical guarantees. We
then show that the resulting sampler, CMSGen, can signif-
icantly improve the performance of applications that utilize
samplers. It is perhaps worth reiterating that we view the
simplicity of CMSGen as its salient strength. The simplicity of
CMSGen stands in stark contrast to complicated algorithmic
schemes developed in the past that fail to attain the desired
quality of distributions with practical runtime performance.

We now turn our attention back to Remark 1; the design
of CMSGen was an iterative process with Barbarik in loop. A
natural direction of future work would be the development
of a tester that provides a quantitative analysis instead of
a qualitative answer of Accept or Reject to measure the
quality of samplers. The significant runtime improvements in
the context of functional synthesis and combinatorial testing
due to CMSGen motivate us to study the impact of CMSGen
in other application domains; to this end, we will release
CMSGen open-source upon publication of our manuscript.

Acknowledgments: This work was supported in part by
National Research Foundation Singapore under its NRF Fel-
lowship Programme [NRF-NRFFAI1-2019-0004] and AI Sin-
gapore Programme [AISG-RP-2018-005], and NUS ODPRT
Grant [R-252-000-685-13]. The computational work for this
article was performed on resources of the National Supercom-
puting Centre, Singapore: https://www.nscc.sg

REFERENCES

[1] D. Achlioptas, Z. S. Hammoudeh, and P. Theodoropoulos, “Fast sam-
pling of perfectly uniform satistying assignments,” in Proc. of SAT, 2018.

[2] G. Audemard and L. Simon, “Predicting learnt clauses quality in modern
SAT solvers,” in Proc. of 1JCAI, 2009.

[3] T. Batu, S. Dasgupta, R. Kumar, and R. Rubinfeld, “The complexity of
approximating the entropy,” Proc. SIAM Journal on Computing, 2005.

[4] A. Biere, M. Heule, and H. van Maaren, Handbook of satisfiability. 10S
press, 2009, vol. 185.

[5] M. Bohme, V.-T. Pham, and A. Roychoudhury, “Coverage-based grey-
box fuzzing as markov chain,” Proc. of ACM SIGSAC, 2016.

[6] S. Cai, C. Luo, and K. Su, “CCAnr: A configuration checking based local
search solver for non-random satisfiability,” in SAT 2015, ser. LNCS,
M. Heule and S. A. Weaver, Eds., vol. 9340. Springer, 2015, pp. 1-8.

[7]1 S. Chakraborty, E. Fischer, Y. Goldhirsh, and A. Matsliah, “On the power
of conditional samples in distribution testing,” Proc. of SIAM Journal
on Computing, 2016.

[8] S. Chakraborty and K. S. Meel, “On testing of uniform samplers,” in
Proc. of AAAL 2019.

[9] S. Chakraborty, D. J. Fremont, K. S. Meel, S. A. Seshia, and M. Y.

Vardi, “On parallel scalable uniform SAT witness generation,” in Proc.

of TACAS, 2015.

S. Chakraborty, D. Fried, K. S. Meel, and M. Y. Vardi, “From weighted

to unweighted model counting,” in Proc. of AAAI, 2015.

S. Chakraborty, K. S. Meel, and M. Y. Vardi, “A scalable and nearly

uniform generator of sat witnesses,” in Proc. of CAV, 2013.

, “Balancing scalability and uniformity in SAT witness generator,”

in Proc. of DAC, 2014.

L. A. Clarke, “A program testing system,” in Proc. of ACM, 1976.

R. Dechter, K. Kask, E. Bin, R. Emek et al., “Generating random

solutions for constraint satisfaction problems,” in Proc. of AAAI, 2002.

J. Devriendt and B. Bogaerts, “BreakID: Static symmetry breaking for

ASP (system description),” CoRR, vol. abs/1608.08447, 2016.

R. Dutra, K. Laeufer, J. Bachrach, and K. Sen, “Efficient sampling of

SAT solutions for testing,” in Proc. of ICSE, 2018.

N. Eén and A. Biere, “Effective preprocessing in SAT through variable

and clause elimination,” in SAT 2005, ser. LNCS, F. Bacchus and

T. Walsh, Eds., vol. 3569. Springer, pp. 61-75.

S. Ermon, C. P. Gomes, A. Sabharwal, and B. Selman, “Uniform solution

sampling using a constraint solver as an oracle,” in Proc. of UAI, 2012.

G. Fraser and A. Arcuri, “Evosuite: automatic test suite generation for

object-oriented software,” in Proc. of ESEC/FSE, 2011.

V. Gogate and R. Dechter, “A new algorithm for sampling CSP solutions

uniformly at random,” in Proc. of CP, 2006.

P. Golia, S. Roy, and K. S. Meel, “Manthan: A data-driven approach for

Boolean function synthesis,” in Proc. of CAV, 2020.

C. Holler, K. Herzig, and A. Zeller, “Fuzzing with code fragments,” in

Proc. of USENIX Security 12, 2012.

J. C. King, “Symbolic execution and program testing,” Comm. ACM,

1976.

[10]
[11]

[12]

[13]
[14]

[15]
[16]

(17]

(18]
[19]
[20]
[21]
[22]

[23]

https://www.nscc.sg

[24]

[25]

[26]
[27]
[28]
[29]
[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]
(38]

[39]

[40]

[41]
[42]
[43]

[44]

N. Kitchen, “Markov chain monte carlo stimulus generation for con-
strained random simulation,” Ph.D. dissertation, UC Berkeley, 2010.
A. Kniippel, T. Thiim, S. Mennicke, J. Meinicke, and I. Schaefer, “Is
there a mismatch between real-world feature models and product-line
research?” in Proc. of ESEC/FSE, 2017.

J. H. Kukula and T. R. Shiple, “Building circuits from relations,” in
Proc. of CAV, 2000.

S. Kullback and R. A. Leibler, “On information and sufficiency,” Proc.
of Ann. Math. Statist., 1951.

V. Kuncak, M. Mayer, R. Piskac, and P. Suter, “Complete functional
synthesis,” 2010.

J. H. Liang, V. Ganesh, K. Czarnecki, and V. Raman, “Sat-based analysis
of large real-world feature models is easy,” in Proc. of sPLC, 2015.

F. Massacci and L. Marraro, “Logical cryptanalysis as a SAT problem,”
Journal of Automated Reasoning, 2000.

F. Medeiros, C. Kistner, M. Ribeiro, R. Gheyi, and S. Apel, “A
comparison of 10 sampling algorithms for configurable systems,” in
Prof. of ICSE, 2016.

M. W. Moskewicz, C. F. Madigan, Y. Zhao, L. Zhang, and S. Malik,
“Chaff: Engineering an efficient SAT solver,” in Proc. of DAC, 2001.
Y. Naveh, M. Rimon, I. Jaeger, Y. Katz, M. Vinov, E. s Marcu, and
G. Shurek, “Constraint-based random stimuli generation for hardware
verification,” Proc. of AI magazine, 2007.

J. Oh, P. Gazzillo, and D. Batory, “t-wise coverage by uniform sam-
pling,” in Proc. of SPLC, 2019.

Q. Plazar, M. Acher, G. Perrouin, X. Devroey, and M. Cordy, “Uniform
sampling of sat solutions for configurable systems: Are we there yet?”
in Proc. of ICST, 2019.

S. Roy, A. Pandey, B. Dolan-Gavitt, and Y. Hu, “Bug synthesis:
Challenging bug-finding tools with deep faults,” in Proc. of ESEC/FSE,
2018.

S. Sharma, R. Gupta, S. Roy, and K. S. Meel, “Knowledge compilation
meets uniform sampling.” in Proc. of LPAR, 2018.

——, “Knowledge compilation meets uniform sampling.” in Proc. of
LPAR, 2018.

M. Soos, S. Gocht, and K. S. Meel, “Tinted, detached, and lazy CNF-
XOR solving and its applications to counting and sampling,” in Proc.
of CAV, 2020.

M. Soos and K. S. Meel, “Bird: Engineering an efficient CNF-XOR sat
solver and its applications to approximate model counting,” in Proc. of
the AAAI, 2019.

M. Soos, K. Nohl, and C. Castelluccia, “Extending SAT solvers to
cryptographic problems,” in Proc. of SAT, 2009.

S. Srivastava, S. Gulwani, and J. S. Foster, “Template-based program
verification and program synthesis,” STTT, 2013.

W. Wei and B. Selman, “A new approach to model counting,” in Proc.
of SAT, 2005.

N. Wetzler, M. J. H. Heule, and W. A. Hunt, “DRAT-trim: Efficient
checking and trimming using expressive clausal proofs,” in Proc. of
SAT, 2014.

	Introduction
	Notation and Background
	Samplers
	Sampler Tester
	Experimental Setup

	From CryptoMiniSat to CMSGen
	The Power of CMSGen
	Testing CMSGen with Barbarik
	Runtime Comparison

	Case Studies: Functional Synthesis and Combinatorial Testing
	Combinatorial Testing
	Boolean Functional Synthesis

	Conclusion
	References

