Distribution-Aware Sampling and Weighted Model Counting for SAT

Supratik Chakraborty¹, Daniel J. Fremont², <u>Kuldeep S Meel³</u>, Sanjit A. Seshia², Moshe Y Vardi³

> ¹Indian Institute of Technology Bombay, India ²University of California, Berkeley ³Department of Computer Science, Rice University

July 31, 2014

AAAI 2014

Weighted Model Counting

Given:

- CNF Formula F, Solution Space: R_F
- Weight Function W(.) over assignments
 - W(σ)

Problem (WMC):

What is the sum of weights of satisfying assignments i.e. $W(R_F)$?

<u>Example</u>

F = (a V b); $R_F = \{[0,1], [1,0], [1,1]\}$ W([0,1]) = W([1,0]) = 1/3 W([1,1]) = W([0,0]) = 1/6

$W(R_F) = 5/6$

Distribution-Aware Sampling

Given:

- CNF Formula F, Solution Space: R_F
- Weight Function W(.) over assignments
 W(σ)

Problem (Sampling):

Pr (Sampling a solution y) = $W(y)/W(R_F)$

Example:

F = (a V b); $R_F = \{[0,1], [1,0], [1,1]\}$ W([0,1]) = W([1,0]) = 1/3 W([1,1]) = W([0,0]) = 1/6 Pr ([0,1] is generated] = (1/3) / (5/6) = 2/5

Exciting Applications

 Probabilistic Inference (Reduced to weighted model counting - Roth 1996)

Probabilistic programming

Constraint random verification (sampling)

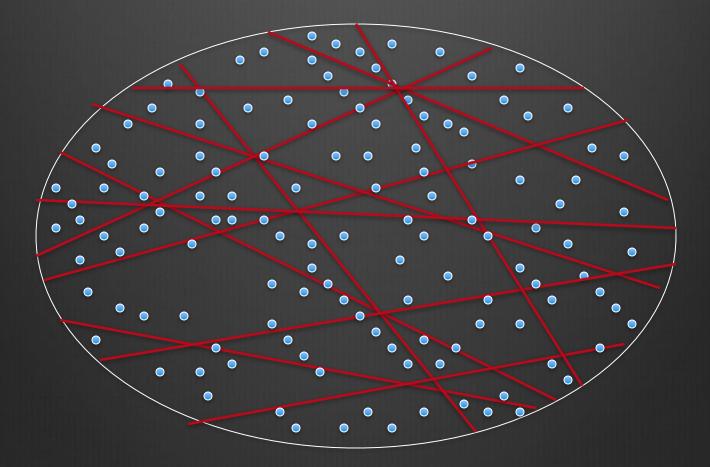
Prior Work

- Exact Methods (Cachet, SDD)
 Poor Scaling
- Guarantee-less Techniques (MCMC)
 No Guarantees
- Approximate methods with Guarantees
 Requires MPE oracle

Main Contributions

- Novel parameter tilt (ρ) to characterize complexity
 ρ = W_{max} / W_{min} over satisfying assignments
- Small Tilt (ρ)
 - Efficient hashing-based technique requires only SAT oracle (no need for MPE oracle)
- Large Tilt (ρ)
 - Framework with access to PB solver

Partitioning into equal "small" cells



7

Partitioning into equal "small" cells

Pick a random cell

Estimated Weighted Count = Weighted Count of the cell * # of cells

How to Partition?

How to partition into roughly equal (weighted) small cells of solutions without knowing the distribution of solutions?

3-Universal Hashing [Carter-Wegman 1979, Sipser 1983]

Strong Theoretical Guarantees

Weighted Counting:

$$Pr[\frac{1}{(1+\varepsilon)w(R_F)} \le C \le \frac{1+\varepsilon}{w(R_F)}] \ge 1-\delta$$

• <u>Sampling:</u>

 $\left|\frac{w(y)}{(1+\varepsilon)w(R_F)} \le \Pr[\text{y is Sampled}] \le (1+\varepsilon)\frac{w(y)}{w(R_F)}.\right|$

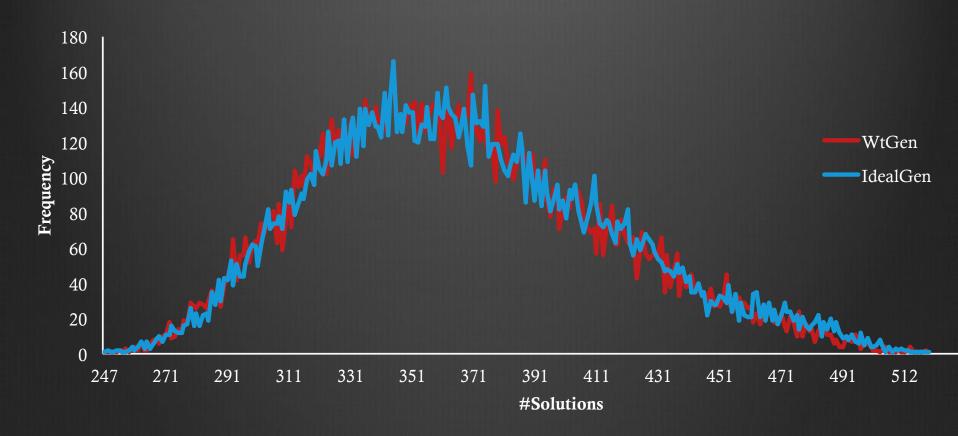
 <u>Complexity</u>: # of calls to SAT solver is linear in ρ

Experimental Comparison

Benchmarks

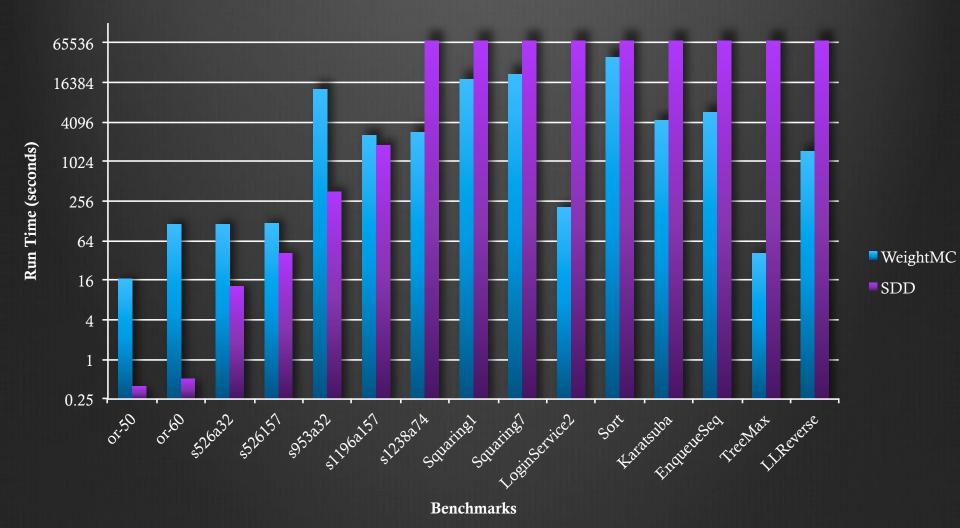
- Grid networks, Plan recognition, ISCAS89, Bounded model checking
- WeightMC: $\rho = 3$, $\varepsilon = 0.8$, $\delta = 0.2$
- WeightGen: $\rho = 3$, $\kappa = 16$
- Objectives:
 - Distribution quality v/s Ideal Sampler
 - Runtime performance v/s SDD

Sampling Distribution



- Benchmark: case110.cnf; #var: 287; #clauses: 1263
- Total Runs: 4x10⁶; Total Solutions : 16384

Significantly Faster than SDD



13

 Distribution-Aware sampling and weighted model counting are important problems

A novel parameter to characterize complexity

Efficient scheme for problems with low tilt

Significantly faster and practically close to the real distribution in practice