On the Hardness of Probabilistic Inference Relaxations

Supratik Chakraborty¹ Kuldeep S. Meel² Moshe Y. Vardi³

¹Indian Institute of Technology, Bombay ²School of Computing, National University of Singapore ³Department of Computer Science, Rice University

Let $q = \Pr[Asthma(A) | Cough(C)]$ $\Pr[Event | Evidence]$

Let $q = \Pr[Asthma(A) | Cough(C)]$ $\Pr[Event | Evidence]$

 $\#\mbox{P-Hard}$ to compute, so need for relaxations

The Story of Relaxations with a Moral Conclusion

Let $q = \Pr[\text{Event} | \text{Evidence}]$

- Additive Relaxations
 Given: δ, ε
 Estimate r such that Pr[q − ε < r < q + ε] ≥ 1 − δ
 (Sarkhel et al. 2016); (Fink,Huang, and Olteanu 2013)
- Threshold Relaxations **Given:** thresh, δ

if $r \ge$ thresh, then textbfOutput YES, else textbfOutput NO (Moyé 2006; King, Rosopa, and Minium 2010; Zongming 2009; Gordon et al. 2014; Bornholt, Mytkowicz, and McKinley 2014)

The Story of Relaxations with a Moral Conclusion

Let $q = \Pr[\text{Event} | \text{Evidence}]$

- Additive Relaxations
 Given: δ, ε
 Estimate r such that Pr[q − ε < r < q + ε] ≥ 1 − δ
 (Sarkhel et al. 2016); (Fink,Huang, and Olteanu 2013)
- Threshold Relaxations Given: thresh, δ

if $r \ge$ thresh, then textbfOutput YES, else textbfOutput NO (Moyé 2006; King, Rosopa, and Minium 2010; Zongming 2009; Gordon et al. 2014; Bornholt, Mytkowicz, and McKinley 2014)

The proposed relaxations are as hard as computing q exactly

The Story of Relaxations with a Moral Conclusion

Let $q = \Pr[\text{Event} | \text{Evidence}]$

- Additive Relaxations
 Given: δ, ε
 Estimate r such that Pr[q − ε < r < q + ε] ≥ 1 − δ
 (Sarkhel et al. 2016); (Fink,Huang, and Olteanu 2013)
- Threshold Relaxations
 Given: thresh, δ
 if r > thresh, then textbfOutput YES, else textbfOutput NO

(Moyé 2006; King, Rosopa, and Minium 2010; Zongming 2009; Gordon et al. 2014; Bornholt, Mytkowicz, and McKinley 2014)

The proposed relaxations are as hard as computing q exactly

Not all is lost. New Relaxation that is efficient to compute and can replace threshold relaxation for statistical testing applications Money Back Guarantee: Come to the poster tonight, and you will leave demanding a rigorous analysis everytime someone proposes new relaxation.