On Testing of Uniform Samplers

Sourav Chakraborty¹ and Kuldeep S. Meel²

 $^{1}\mbox{Indian Statistical Institute}$ $^{2}\mbox{School of Computing, National University of Singapore}$

Andrew Ng Artificial intelligence is the new electricity

• Gray Scott There is no reason and no way that a human mind can keep up with an artificial intelligence machine by 2035

Andrew Ng Artificial intelligence is the new electricity

• Gray Scott There is no reason and no way that a human mind can keep up with an artificial intelligence machine by 2035

And yet it fails at basic tasks

- English: I'm a huge metal fan
- Translate in French: Je suis un enorme ventilateur en metal. (I'm a large ventilator made of metal.)

Andrew Ng Artificial intelligence is the new electricity

• Gray Scott There is no reason and no way that a human mind can keep up with an artificial intelligence machine by 2035

And yet it fails at basic tasks

- English: I'm a huge metal fan
- Translate in French: Je suis un enorme ventilateur en metal. (I'm a large ventilator made of metal.)

Eric Schmidt, 2015: There should be verification systems that evaluate whether an Al system is doing what it was built to do.

- Samplers form the core of the state of the art probabilistic reasoning techniques
 - tf.nn.uniform_candidate_sampler

- Samplers form the core of the state of the art probabilistic reasoning techniques
 - tf.nn.uniform_candidate_sampler
- Usual technique for designing samplers is based on the Markov Chain Monte Carlo (MCMC) methods.

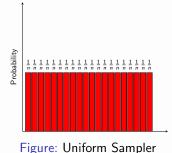
- Samplers form the core of the state of the art probabilistic reasoning techniques
 - tf.nn.uniform_candidate_sampler
- Usual technique for designing samplers is based on the Markov Chain Monte Carlo (MCMC) methods.
- Since mixing times/runtime of the underlying Markov Chains are often exponential, several heuristics have been proposed over the years.

- Samplers form the core of the state of the art probabilistic reasoning techniques
 - tf.nn.uniform_candidate_sampler
- Usual technique for designing samplers is based on the Markov Chain Monte Carlo (MCMC) methods.
- Since mixing times/runtime of the underlying Markov Chains are often exponential, several heuristics have been proposed over the years.
- Often statistical tests are employed to argue for quality of the output distributions.

- Samplers form the core of the state of the art probabilistic reasoning techniques
 - tf.nn.uniform_candidate_sampler
- Usual technique for designing samplers is based on the Markov Chain Monte Carlo (MCMC) methods.
- Since mixing times/runtime of the underlying Markov Chains are often exponential, several heuristics have been proposed over the years.
- Often statistical tests are employed to argue for quality of the output distributions.
- But such statistical tests are often performed on a very small number of samples for which no theoretical guarantees exist for their accuracy.

What does Complexity Theory Tell Us

- The queries are sample drawn according to the distribution
- "far" means total variation distance or the ℓ_1 distance.



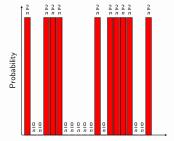


Figure: 1/2-far from uniform Sampler

What does Complexity Theory Tell Us

- The queries are sample drawn according to the distribution
- "far" means total variation distance or the ℓ_1 distance.

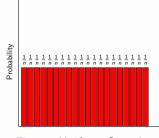


Figure: Uniform Sampler

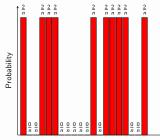


Figure: 1/2-far from uniform Sampler

• If $<\sqrt{S}/100$ samples are drawn then with high probability you see only distinct samples from either distribution.

Theorem (Batu-Fortnow-Rubinfeld-Smith-White (JACM 2013))

Testing whether a distribution is ϵ -close to uniform has query complexity $\Theta(\sqrt{S}/\epsilon^2)$. [Paninski (Trans. Inf. Theory 2008)]

Definition (Conditional Sampling)

Given a distribution ${\mathcal D}$ on a domain S one can

- Specify a set $T \subseteq D$,
- Draw samples according to the distribution D|_T, that is,
 D under the condition that the samples belong to T.

Definition (Conditional Sampling)

Given a distribution ${\mathcal D}$ on a domain S one can

- Specify a set $T \subseteq D$,
- Draw samples according to the distribution D|_T, that is,
 D under the condition that the samples belong to T.

Clearly such a sampling is at least as powerful as drawing normal samples.

But how much powerful is it?

Testing Uniformity Using Conditional Sampling

Testing Uniformity Using Conditional Sampling

An algorithm for testing uniformity using conditional sampling:

- Draw two elements x and y uniformly at random from the domain.
 Let T = {x, y}.
- In the case of the "far" distribution, with probability 1/2, one of the two elements will have probability 0, and the other probability non-zero.
- Now a constant number of conditional samples drawn from D|T is enough to identify that it is not uniform.

What about other distributions?

What about other distributions?

Previous algorithm fails in this case:

- Draw two elements σ₁ and σ₂ uniformly at random from the domain. Let T = {σ₁, σ₂}.
- In the case of the "far" distribution, with probability almost 1, both the two elements will have probability same, namely *ε*.
- Probability that we will be able to distinguish the far distribution from the uniform distribution is very low.

Need few more different tests - More details at the poster

Uniform Sampler for CNF formulas

- Given a CNF formula ϕ , a CNF Sampler, A, outputs a random solution of ϕ .
- So **S** is the set of all solutions of ϕ .

Definition

A CNF-Sampler, A, is a randomized algorithm that, given a ϕ , outputs a random element of the set S, such that, for any $\sigma \in S$

$$\Pr[\mathcal{A}(\phi) = \sigma] = \frac{1}{|S|},$$

Uniform Sampler for CNF formulas

- Given a CNF formula ϕ , a CNF Sampler, A, outputs a random solution of ϕ .
- So **S** is the set of all solutions of ϕ .

Definition

A CNF-Sampler, A, is a randomized algorithm that, given a ϕ , outputs a random element of the set S, such that, for any $\sigma \in S$

$$\Pr[\mathcal{A}(\phi) = \sigma] = \frac{1}{|S|},$$

• Uniform sampling has wide range of applications in automated bug discovery, pattern mining, and so on.

Uniform Sampler for CNF formulas

- Given a CNF formula ϕ , a CNF Sampler, A, outputs a random solution of ϕ .
- So **S** is the set of all solutions of ϕ .

Definition

A CNF-Sampler, A, is a randomized algorithm that, given a ϕ , outputs a random element of the set S, such that, for any $\sigma \in S$

$$\Pr[\mathcal{A}(\phi) = \sigma] = \frac{1}{|S|},$$

- Uniform sampling has wide range of applications in automated bug discovery, pattern mining, and so on.
- Several samplers available off the shelf: tradeoff between guarantees and runtime

Input: A sampler A, a reference uniform generator U, a tolerance parameter $\varepsilon > 0$, an intolerance parmaeter $\eta > \varepsilon$, a guarantee parameter δ and a CNF formula φ Output: ACCEPT or REJECT with the following guarantees:

- if the generator A is an ε -additive almost-uniform generator then Barbarik ACCEPTS with probability at least $(1 - \delta)$.
- if $\mathcal{A}(\varphi, .)$ is η -far from a uniform generator and If non-adversarial sampler assumption holds then Barbarik REJECTS with probability at least 1δ .

Theorem

Given ε , η and δ , Barbarik need at most $K = \widetilde{O}(\frac{1}{(\eta - \varepsilon)^4})$ samples for any input formula φ , where the tilde hides a poly logarithmic factor of $1/\delta$ and $1/(\eta - \varepsilon)$.

- $\varepsilon = 0.6, \eta = 0.9, \delta = 0.1$
- Maximum number of required samples $K = 1.72 \times 10^6$
- Independent of the number of variables
- To Accept, we need K samples but rejection can be achieved with lesser number of samples.

- Three state of the art (almost-)uniform samplers
 - UniGen2: Theoretical Guarantees of uniformity
 - SearchTreeSampler: Very weak guarantees
 - QuickSampler: No Guarantees
- Recent study that proposed Quicksampler perform unsound statistical tests and claimed that all the three samplers are indistinguishable

Instances	#Solutions	UniGen2		SearchTreeSampler	
		Output	#Solutions	Output	#Solutions
71	$1.14 imes 2^{59}$	A	1729750	R	250
blasted_case49	$1.00 imes 2^{61}$	A	1729750	R	250
blasted_case50	$1.00 imes 2^{62}$	A	1729750	R	250
scenarios_aig_insertion1	$1.06 imes 2^{65}$	A	1729750	R	250
scenarios_aig_insertion2	$1.06 imes 2^{65}$	A	1729750	R	250
36	$1.00 imes 2^{72}$	A	1729750	R	250
30	$1.73 imes 2^{72}$	A	1729750	R	250
110	$1.09 imes 2^{76}$	A	1729750	R	250
scenarios_tree_insert_insert	$1.32 imes 2^{76}$	A	1729750	R	250
107	$1.52 imes2^{76}$	A	1729750	R	250
blasted_case211	$1.00 imes 2^{80}$	A	1729750	R	250
blasted_case210	$1.00 imes 2^{80}$	A	1729750	R	250
blasted_case212	$1.00 imes 2^{88}$	A	1729750	R	250
blasted_case209	$1.00 imes 2^{88}$	A	1729750	R	250
54	$1.15 imes2^{90}$	А	1729750	R	250

Instances	#Solutions	UniGen2		QuickSampler	
		Output	#Solutions	Output	#Solutions
71	$1.14 imes 2^{59}$	A	1729750	R	250
blasted_case49	$1.00 imes 2^{61}$	A	1729750	R	250
blasted_case50	$1.00 imes 2^{62}$	A	1729750	R	250
scenarios_aig_insertion1	$1.06 imes 2^{65}$	A	1729750	R	250
scenarios_aig_insertion2	$1.06 imes 2^{65}$	A	1729750	R	250
36	$1.00 imes 2^{72}$	A	1729750	R	250
30	$1.73 imes 2^{72}$	A	1729750	R	250
110	$1.09 imes 2^{76}$	A	1729750	R	250
scenarios_tree_insert_insert	$1.32 imes 2^{76}$	A	1729750	R	250
107	$1.52 imes 2^{76}$	A	1729750	R	250
blasted_case211	$1.00 imes 2^{80}$	A	1729750	R	250
blasted_case210	$1.00 imes 2^{80}$	A	1729750	R	250
blasted_case212	$1.00 imes 2^{88}$	A	1729750	R	250
blasted_case209	$1.00 imes 2^{88}$	A	1729750	R	250
54	$1.15 imes2^{90}$	А	1729750	R	250

- Barbarik can effectively test whether a sampler generates uniform distribution
- Samplers without guarantees, SearchTreeSampler and QuickSampler, fail the uniformity test while sampler with guarantees passes the uniformity test.

- We need methodological approach to verification of AI systems
- Need to go beyond qualitative verification

- We need methodological approach to verification of AI systems
- Need to go beyond qualitative verification
- Sampling is a crucial component of the state of the art probabilistic reasoning systems
- Traditional verification methodology is insufficient

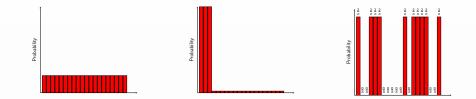
- We need methodological approach to verification of AI systems
- Need to go beyond qualitative verification
- Sampling is a crucial component of the state of the art probabilistic reasoning systems
- Traditional verification methodology is insufficient
- Property testing meets verification: Promise of strong theoretical guarantees with scalability to large instances

- We need methodological approach to verification of AI systems
- Need to go beyond qualitative verification
- Sampling is a crucial component of the state of the art probabilistic reasoning systems
- Traditional verification methodology is insufficient
- Property testing meets verification: Promise of strong theoretical guarantees with scalability to large instances
- Extend beyond uniform distributions

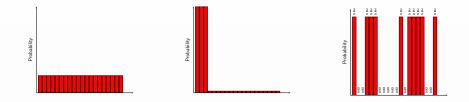
- We need methodological approach to verification of AI systems
- Need to go beyond qualitative verification
- Sampling is a crucial component of the state of the art probabilistic reasoning systems
- Traditional verification methodology is insufficient
- Property testing meets verification: Promise of strong theoretical guarantees with scalability to large instances
- Extend beyond uniform distributions

MAHALO

Testing Uniformity Using Conditional Sampling



Testing Uniformity Using Conditional Sampling



- Draw σ₁ uniformly at random from the domain and draw σ₂ according to the distribution D. Let T = {x, y}.
- 2 In the case of the "far" distribution, with constant probability, σ_1 will have "low" probability and σ_2 will have "high" probibility.
- We will be able to distinguish the far distribution from the uniform distribution using constant number of conditional samples from *D*|_T.
- The constant depend on the farness parameter.

- Oraw σ₁ uniformly at random from the domain and draw σ₂ according to the distribution D. Let T = {σ₁, σ₂}.
- 2 In the case of the "far" distribution, with constant probability, σ_1 will have "low" probability and σ_2 will have "high" probibility.
- We will be able to distinguish the far distribution from the uniform distribution using constant number of conditional samples from *D*|_T.
 - How do we generate conditional samples?
- The constant depend on the farness parameter.

- Input formula: F over variables X
- Challenge: Conditional Sampling over $T = \{\sigma_1, \sigma_2\}$.
- Construct $G = F \land (X = \sigma_1 \lor X = \sigma_2)$

- Input formula: F over variables X
- Challenge: Conditional Sampling over $T = \{\sigma_1, \sigma_2\}$.
- Construct $G = F \land (X = \sigma_1 \lor X = \sigma_2)$
- Most of the samplers enumerate all the points when the number of points in the Domain are small
- Need way to construct formulas whose solution space is large but every solution can be mapped to either σ_1 or σ_2 .

Input: A Boolean formula $\varphi,$ two assignments σ_1 and $\sigma_2,$ and desired number of solutions τ

Output: Formula $\hat{\varphi}$

2
$$Supp(\varphi) \subseteq Supp(\hat{\varphi})$$

•
$$|\{z \in R_{\hat{\varphi}} \mid z_{\downarrow S} = \sigma_1\}| = |\{z \in R_{\hat{\varphi}} \mid z_{\downarrow S} \cap \sigma_2\}|$$
, where $S = Supp(\varphi)$.

. . .

(a) φ and $\hat{\varphi}$ has similar structure

Definition

The **non-adversarial sampler assumption** states that if $\mathcal{A}(\varphi)$ outputs a sample by drawing according to a distribution \mathcal{D} then the $(\hat{\varphi})$ obtained from *kernel*($\varphi, \sigma_1, \sigma_2, N$) has the property that:

- There are only two set of assignments to variables in φ that can be extended to a satisfying assignment for $\hat{\varphi}$
- The distribution of the projection of samples obtained from $\hat{\varphi}$ to variables of φ is same as the conditional distribution of φ restricted to either σ_1 or σ_2
- If ${\mathcal A}$ is a uniform sampler for all the input formulas, it satisfies non-adversarial sampler assumption
- If \mathcal{A} is not a uniform sampler for all the input formulas, it may not necessarily satisfy non-adversarial sampler assumption