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AI: The Need for Verification

Andrew Ng Artificial intelligence is the new electricity

• Gray Scott There is no reason and no way that a human mind can
keep up with an artificial intelligence machine by 2035

And yet it fails at basic tasks

• English: I’m a huge metal fan

• Translate in French: Je suis un enorme ventilateur en metal. (I’m
a large ventilator made of metal.)

Eric Schmidt, 2015: There should be verification systems that evaluate
whether an AI system is doing what it was built to do.
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Probabilistic Reasoning

• Samplers form the core of the state of the art probabilistic
reasoning techniques

– tf .nn.uniform candidate sampler

• Usual technique for designing samplers is based on the Markov
Chain Monte Carlo (MCMC) methods.

• Since mixing times/runtime of the underlying Markov Chains are
often exponential, several heuristics have been proposed over the
years.

• Often statistical tests are employed to argue for quality of the
output distributions.

• But such statistical tests are often performed on a very small
number of samples for which no theoretical guarantees exist for
their accuracy.
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What does Complexity Theory Tell Us

• The queries are sample drawn according to the distribution
• “far” means total variation distance or the `1 distance.
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Figure: Uniform Sampler
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Figure: 1/2-far from uniform Sampler

• If <
√
S/100 samples are drawn then with high probability you see

only distinct samples from either distribution.

Theorem (Batu-Fortnow-Rubinfeld-Smith-White (JACM 2013))

Testing whether a distribution is ε-close to uniform has query
complexity Θ(

√
S/ε2). [Paninski (Trans. Inf. Theory 2008)]

• If the output of a sampler is represented by 3 doubles, then
S > 2100
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Beyond Black Box Testing

Definition (Conditional Sampling)

Given a distribution D on a domain S one can

• Specify a set T ⊆ D,

• Draw samples according to the distribution D|T , that is,
D under the condition that the samples belong to T .

Clearly such a sampling is at least as powerful as drawing normal
samples.
But how much powerful is it?
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Testing Uniformity Using Conditional Sampling
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An algorithm for testing uniformity using conditional sampling:

1 Draw two elements x and y uniformly at random from the domain.
Let T = {x , y}.

2 In the case of the “far” distribution, with probability 1/2, one of
the two elements will have probability 0, and the other probability
non-zero.

3 Now a constant number of conditional samples drawn from D|T is
enough to identify that it is not uniform.
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What about other distributions?
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Previous algorithm fails in this case:

1 Draw two elements σ1 and σ2 uniformly at random from the
domain. Let T = {σ1, σ2}.

2 In the case of the “far” distribution, with probability almost 1,
both the two elements will have probability same, namely ε.

3 Probability that we will be able to distinguish the far distribution
from the uniform distribution is very low.

Need few more different tests – More details at the poster
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Uniform Sampler for CNF formulas

• Given a CNF formula φ, a CNF Sampler, A, outputs a random
solution of φ.

• So S is the set of all solutions of φ.

Definition

A CNF-Sampler, A, is a randomized algorithm that, given a φ, outputs
a random element of the set S , such that, for any σ ∈ S

Pr[A(φ) = σ] =
1

|S |
,

• Uniform sampling has wide range of applications in automated bug
discovery, pattern mining, and so on.

• Several samplers available off the shelf: tradeoff between
guarantees and runtime
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Barbarik

Input: A sampler A, a reference uniform generator U , a tolerance
parameter ε > 0, an intolerance parmaeter η > ε, a guarantee
parameter δ and a CNF formula ϕ
Output: ACCEPT or REJECT with the following guarantees:

• if the generator A is an ε-additive almost-uniform generator then
Barbarik ACCEPTS with probability at least (1− δ).

• if A(ϕ, .) is η-far from a uniform generator and If non-adversarial
sampler assumption holds then Barbarik REJECTS with probability
at least 1− δ.
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Sample complexity

Theorem

Given ε, η and δ, Barbarik need at most K = Õ( 1
(η−ε)4 ) samples for

any input formula ϕ, where the tilde hides a poly logarithmic factor of
1/δ and 1/(η − ε).

• ε = 0.6, η = 0.9, δ = 0.1

• Maximum number of required samples K = 1.72×106

• Independent of the number of variables

• To Accept, we need K samples but rejection can be achieved with
lesser number of samples.
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Experimental Setup

• Three state of the art (almost-)uniform samplers

– UniGen2: Theoretical Guarantees of uniformity
– SearchTreeSampler: Very weak guarantees
– QuickSampler: No Guarantees

• Recent study that proposed Quicksampler perform unsound
statistical tests and claimed that all the three samplers are
indistinguishable
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Results-I

Instances #Solutions UniGen2 SearchTreeSampler
Output #Solutions Output #Solutions

71 1.14× 259 A 1729750 R 250
blasted case49 1.00× 261 A 1729750 R 250
blasted case50 1.00× 262 A 1729750 R 250

scenarios aig insertion1 1.06× 265 A 1729750 R 250
scenarios aig insertion2 1.06× 265 A 1729750 R 250

36 1.00× 272 A 1729750 R 250
30 1.73× 272 A 1729750 R 250
110 1.09× 276 A 1729750 R 250

scenarios tree insert insert 1.32× 276 A 1729750 R 250
107 1.52× 276 A 1729750 R 250

blasted case211 1.00× 280 A 1729750 R 250
blasted case210 1.00× 280 A 1729750 R 250
blasted case212 1.00× 288 A 1729750 R 250
blasted case209 1.00× 288 A 1729750 R 250

54 1.15× 290 A 1729750 R 250
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Results-II

Instances #Solutions UniGen2 QuickSampler
Output #Solutions Output #Solutions

71 1.14× 259 A 1729750 R 250
blasted case49 1.00× 261 A 1729750 R 250
blasted case50 1.00× 262 A 1729750 R 250

scenarios aig insertion1 1.06× 265 A 1729750 R 250
scenarios aig insertion2 1.06× 265 A 1729750 R 250

36 1.00× 272 A 1729750 R 250
30 1.73× 272 A 1729750 R 250
110 1.09× 276 A 1729750 R 250

scenarios tree insert insert 1.32× 276 A 1729750 R 250
107 1.52× 276 A 1729750 R 250

blasted case211 1.00× 280 A 1729750 R 250
blasted case210 1.00× 280 A 1729750 R 250
blasted case212 1.00× 288 A 1729750 R 250
blasted case209 1.00× 288 A 1729750 R 250

54 1.15× 290 A 1729750 R 250
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Take Home Message

• Barbarik can effectively test whether a sampler generates uniform
distribution

• Samplers without guarantees, SearchTreeSampler and
QuickSampler, fail the uniformity test while sampler with
guarantees passes the uniformity test.
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Conclusion

• We need methodological approach to verification of AI systems

• Need to go beyond qualitative verification

• Sampling is a crucial component of the state of the art
probabilistic reasoning systems

• Traditional verification methodology is insufficient

• Property testing meets verification: Promise of strong theoretical
guarantees with scalability to large instances

• Extend beyond uniform distributions

MAHALO
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Testing Uniformity Using Conditional Sampling
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1 Draw σ1 uniformly at random from the domain and draw σ2
according to the distribution D. Let T = {x , y}.

2 In the case of the “far” distribution, with constant probability, σ1
will have “low” probability and σ2 will have “high” probibility.

3 We will be able to distinguish the far distribution from the uniform
distribution using constant number of conditional samples from
D|T .

4 The constant depend on the farness parameter.
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Barbarik

1 Draw σ1 uniformly at random from the domain and draw σ2
according to the distribution D. Let T = {σ1, σ2}.

2 In the case of the “far” distribution, with constant probability, σ1
will have “low” probability and σ2 will have “high” probibility.

3 We will be able to distinguish the far distribution from the uniform
distribution using constant number of conditional samples from
D|T .

– How do we generate conditional samples?

4 The constant depend on the farness parameter.
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CNF Samplers

• Input formula: F over variables X

• Challenge: Conditional Sampling over T = {σ1, σ2}.
• Construct G = F ∧ (X = σ1 ∨ X = σ2)

• Most of the samplers enumerate all the points when the number of
points in the Domain are small

• Need way to construct formulas whose solution space is large but
every solution can be mapped to either σ1 or σ2.
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Kernel

Input: A Boolean formula ϕ, two assignments σ1 and σ2, and desired
number of solutions τ
Output: Formula ϕ̂

1 τ = |Rϕ̂|
2 Supp(ϕ) ⊆ Supp(ϕ̂)

3 z ∈ Rϕ̂ =⇒ z↓S ∈ {σ1, σ2}
4 |{z ∈ Rϕ̂ | z↓S = σ1}| = |{z ∈ Rϕ̂ | z↓S ∩ σ2}|, where

S = Supp(ϕ).

5 ϕ and ϕ̂ has similar structure
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Non-adversarial Sampler

Definition

The non-adversarial sampler assumption states that if A(ϕ) outputs
a sample by drawing according to a distribution D then the (ϕ̂)
obtained from kernel(ϕ, σ1, σ2,N) has the property that:

• There are only two set of assignments to variables in ϕ that can be
extended to a satisfying assignment for ϕ̂

• The distribution of the projection of samples obtained from ϕ̂ to
variables of ϕ is same as the conditional distribution of ϕ restricted
to either σ1 or σ2

• If A is a uniform sampler for all the input formulas, it satisfies
non-adversarial sampler assumption

• If A is not a uniform sampler for all the input formulas, it may not
necessarily satisfy non-adversarial sampler assumption
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