

Not All FPRASs are Equal: Demystifying FPRASs for DNF-Counting

Kuldeep S. Meel¹, Aditya A. Shrotri², Moshe Y. Vardi²

¹ School of Computing, National University of Singapore

² Department of Computer Science, Rice University

Beyond SAT: #SAT

- SAT: *Does there exist a satisfying assignment?*
- #SAT: <u>How many</u> satisfying assignments?
 - Complexity: #P-Complete (contains entire polynomial hierarchy)
 - In Practice: Harder than SAT

The Disjunctive Normal Form

- F = $(\neg X_1 \land X_2) \lor (X_2 \land X_3 \land X_4) \lor (X_1 \land X_3 \land \neg X_5)$
 - Disjunction of Cubes

DNF-SAT is in P

#DNF is #P-Complete [Valiant, '79]

Need to Approximate!

Input: DNF Formula F

Tolerance ε $0 < \varepsilon < 1$ Confidence δ $0 < \delta < 1$

Output: Approximate Count C s.t.

Pr [#F \cdot (1- ϵ) < C < #F \cdot (1+ ϵ)] > 1- δ

Fully Polynomial Randomized Approximation Scheme

Input: DNF Formula F

Tolerance ε $0 < \varepsilon < 1$ Confidence δ $0 < \delta < 1$

Output: Approximate Count C s.t.

Pr [#F \cdot (1- ε) < C < #F \cdot (1+ ε)] > 1- δ

Challenge: Design a poly(m, n,
$$\frac{1}{\epsilon}$$
, $\log(\frac{1}{\delta})$) time algorithm

where m = #cubes n = #vars

- Monte Carlo Sampling
 - Best complexity: $O(m \cdot n \cdot log(\frac{1}{\delta}) \cdot \frac{1}{\epsilon^2})$

- Hashing based
 - Best complexity: $\widetilde{O}(m \cdot n \cdot log(\frac{1}{\delta}) \cdot \frac{1}{\epsilon^2})$

Motivation

- Can hashing based approach have same complexity as Monte Carlo?
- 2. How do the various algorithms compare empirically?

Our Contribution

- 1. Can hashing based approach have same complexity as Monte Carlo?
- 2. How do the various algorithms compare empirically? In this work:
- Improved complexity of hashing based algorithm
 - Improves practical performance

- First comprehensive empirical evaluation of FPRASs for #DNF
 - Much more nuanced than complexity analysis alone

• Draw independent samples from U

• Draw independent samples from U

- Draw independent samples from U
- Count samples that satisfy F

- Draw independent samples from U
- Count samples that satisfy F

- Draw independent samples from U
- Count samples that satisfy F

- **Requirement:** $\frac{\#F}{|U|}$ is large
 - Solution density plays crucial role

Monte Carlo FPRAS

- KL Counter [Karp, Luby, '83]
 - Insight: Transform solution space

• KLM Counter [Karp et al., '89]

$$O(m \cdot n \cdot log(\frac{1}{\delta}) \cdot \frac{1}{\varepsilon^2})$$

Insight: Sample using geometric distribution

- Vazirani Counter [Vazirani, '13]
 - Insight: Low variance \Rightarrow fewer samples

- Partition U into small cells
- Count solutions in a random cell 'C_{cell}'
- $\#F \approx C_{cell} * no. of cells$

- Partition U into small cells
- Count solutions in a random cell 'C_{cell}'
- $\#F \approx C_{cell} * no. of cells$
- Requirements:
 - Roughly equal solutions in each cell
 - Right size of cell

• **Requirement:** Roughly Equal Solutions in each cell

- **Solution:** Hash Functions
 - Conjunction of random XOR formulas
 - h = $H_1 \wedge H_2 \wedge \dots \wedge H_i$
 - h: $2^n \rightarrow 2^i$

• **Requirement:** Right size cell

- **Solution:** Count up to threshold *T*
 - + *T* depends on ε and δ
 - $C_{cell} > T \implies$ cell too large
 - Increase no. of constraints *i*
 - Find *i* such that $C_{cell} \leq T$

• **Requirement:** Right size partition

- **Solution:** Count up to threshold *T*
 - Find *i* such that $C_{cell} \leq T$

• **Requirement:** Right size partition

- **Solution:** Count up to threshold *T*
 - Find *i* such that $C_{cell} \leq T$

i	0	1
C _{cell}	$C_{cell} > T$	$C_{cell} > T$
Cell size	Too large	Too large

K

• **Requirement:** Right size partition

- **Solution:** Count up to threshold *T*
 - Find *i* such that $C_{cell} \leq T$

i	0	1	2
C _{cell}	$C_{cell} > T$	$C_{cell} > T$	$C_{cell} > T$
Cell size	Too large	Too large	Too large

• **Requirement:** Right size partition

- **Solution:** Count up to threshold *T*
 - Find *i* such that $C_{cell} \leq T$

				, ,	
i	0	1	2	 l-1	l
C _{cell}	$C_{cell} > T$	$C_{cell} > T$	$C_{cell} > T$	 $C_{cell} > T$	$C_{cell} \leq T$
Cell size	Too large	Too large	Too large	 Too large	Perfect

• #F
$$\approx$$
 C_{cell} * 2^l

- 1. DNFApproxMC [Chakraborty et al., '16]
 - Insight: Satisfiability of partitioned DNF formulas is polytime

- 2. SymbolicDNFApproxMC [Meel et al., '17] $\tilde{O}(m \cdot n \cdot log(\frac{1}{\delta}) \cdot \frac{1}{\epsilon^2})$
 - Insight: Symbolic hash constraints applied to transformed space

• **Requirement:** Right size partition

- **Solution:** Count up to threshold *T*
 - Find *i* such that $C_{cell} \leq T$

)	
i	0	1	2	 l-1	l
C _{cell}	$C_{cell} > T$	$C_{cell} > T$	$C_{cell} > T$	 $C_{cell} > T$	$C_{cell} \leq T$
Cell size	Too large	Too large	Too large	 Too large	Perfect

• #F
$$\approx$$
 C_{cell} * 2^{*l*}

Drawback: Re-enumerates solutions multiple times

24

Reverse Search

Insight: Search in reverse direction

i	0	1	2	 l-1	l	 n-1	n
C _{cell}	$C_{cell} > T$	$C_{cell} > T$	$C_{cell} > T$	 $C_{cell} > T$	$C_{cell} \leq T$	 $C_{cell} \leq T$	$C_{cell} \leq T$
Cell size	Too large	Too large	Too large	 Too large	Perfect	 Too small	Too small

- Advantages:
 - Each solution is enumerated exactly once
 - + l is close to n for DNF formulas

Reverse Search

Insight: Search in reverse direction

i	0	1	2	 l-1	l	 n-1	n
C _{cell}	$C_{cell} > T$	$C_{cell} > T$	$C_{cell} > T$	 $C_{cell} > T$	$C_{cell} \leq T$	 $C_{cell} \leq T$	$C_{cell} \leq T$
Cell size	Too large	Too large	Too large	 Too large	Perfect	 Too small	Too small

- Advantages:
 - Each solution is enumerated exactly once
 - l is close to n for DNF formulas
- **Theorem:** The complexity of SymbolicDNFApproxMC with Reverse Search is $O(m \cdot n \cdot log(\frac{1}{\delta}) \cdot \frac{1}{\epsilon^2})$

Reverse Search vs. Forward Search

900+ benchmarks

- X-axis: Time taken by Binary Search
- **Y-axis:** Time taken by Reverse Search

Reverse Search is 4-5 times faster!

Experiments: Algorithms

- Monte Carlo Based
 - KL Counter
 - Vazirani Counter
 - KLM Counter

$$O(m^{2} \cdot n \cdot log(\frac{1}{\delta}) \cdot \frac{1}{\varepsilon^{2}})$$
$$O(m^{2} \cdot n \cdot log(\frac{1}{\delta}) \cdot \frac{1}{\varepsilon^{2}})$$
$$O(m \cdot n \cdot log(\frac{1}{\delta}) \cdot \frac{1}{\varepsilon^{2}})$$

- Hashing Based
 - DNFApproxMC
 - SymbolicDNFApproxMC

$$O(m \cdot n^2 \cdot log(\frac{1}{\delta}) \cdot \frac{1}{\varepsilon^2})$$
$$O(m \cdot n \cdot log(\frac{1}{\delta}) \cdot \frac{1}{\varepsilon^2})$$

Runtime Variation

- 1. **Runtime Variation**: How does the running time of the algorithms vary across different benchmarks?
 - Parameters
 - # vars = 100,000
 - $\# \text{ cubes} \in [10^4, 8 \times 10^6]$
 - Cube width ∈ {**3**, 13, **23**, 33, 43}
 - 20 random benchmarks for each setting of parameters

٠

Runtime Variation

- X-axis: Number of cubes
- **Y-axis:** Median run time over 20 instances
- Timeout: 500 sec

Observations:

- DNFApproxMC performs very well
- All other algorithms quickly timeout

Reason: Low density of solutions

 Monte Carlo algorithms and SymbolicDNFApproxMC are sensitive to solution density

Runtime Variation

- X-axis: Number of cubes
- **Y-axis:** Median run time over 20 instances
- Timeout: 500 sec

Observations:

- DNFApproxMC performance degrades gracefully
- Performance of other algorithms
 improves dramatically

Reason: Density of solutions increases with cube-width

Total Benchmarks Solved

- 2. Total Benchmarks Solved: How many benchmarks can the algorithms solve overall?
 - Measures raw problem solving ability
 - Same 900 benchmarks as **Runtime Variation**

Total Benchmarks Solved

 Point (X,Y) represents X number of benchmarks out of 900 were solved in Y seconds or less

Observations:

 DNFApproxMC does not timeout on any formulas

Reason: Efficient data structures mitigate dependence on solution density

Other Experiments

- 1. **Runtime Variation**: How does the running time of the algorithms vary across different benchmarks?
- 2. Total Benchmarks Solved: How many benchmarks can the algorithms solve overall?
- 3. Accuracy: How accurate are the counts returned by the algorithms?
- 4. $\epsilon \delta$ Scalability: How do the algorithms scale with the input tolerance and confidence?

Summary

- Theory:
 - Introduced Reverse Search for hashing based counting
 - Improved the complexity of hashing FPRAS by polylog factors
 - 4 5 times speedup in practice

Summary

• Empirical Evaluation

- Presented nuanced picture
 - Different algorithms are well suited for different formula types
- Algorithm with poor time complexity (DNFApproxMC) is most robust and solves largest number of benchmarks
- Takeaways for practitioners:
 - High solution density \Rightarrow use KLM Counter
 - Low or unknown solution density \Rightarrow use DNFApproxMC

Future Directions

- New counter that is robust as DNFApproxMC and fast as KLM Counter?
 - Portfolio of algorithms approach

- Real-world adoption of techniques
 - Break vicious cycle
- Study effect of Reverse Search on CNF and SMT Counting

Backup Slides

Experiments: Accuracy

Algorithm	Mean Error	Max Error
DNFApproxMC	0.09	0.36
SymbolicDNFApproxMC	0.21	0.42
KLM Counter	0.11	0.55
KL Counter	0.007	0.20
Vazirani Counter	0.001	0.04

Experiments: $\epsilon - \delta$ Scalability

