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Beyond SAT: #SAT

. SAT: Does there exist a satisfying assignment?

. #SAT: How many satisfying assignments?

. Complexity: #P-Complete (contains entire polynomial hierarchy)
In Practice: Harder than SAT

Measuring
Information
Leakage

Probabilistic
Inference

Network Probabilistic
Reliability Databases
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The Disjunctive Normal Form

+ F=(=X1 A X2) V(X2 AX3 AXy) V(X1 A X3 A= X5)

\%

. Disjunction of Cubes
- DNF-SATisin P
. #DNF is #P-Complete [Valiant, '79]

. Need to Approximate!
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Approximate DNF-Counting

Input: DNF Formula F
Tolerance € O<e<1l
Confidence 6 0<6<1

Output: Approximate Count C s.t.

Pr [#F -(1-€) < C< #F :(1+€) ] > 1-6
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Fully Polynomial Randomized Approximation Scheme

Input: DNF Formula F
Tolerance € O<e<1l
Confidence 6 0<6<1

Output: Approximate Count C s.t.

Pr [#F -(1-€) < C< #F :(1+€) ] > 1-6

Challenge: Design a poly(m, n, i , log( % )) time algorithm

where m = #cubes n = #vars
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Paradigms for #DNF FPRAS

Monte Carlo Sampling

. Best complexity: O(m - n - log(%) -l)

P/

Hashing — based

. Best complexity: 5(m "n- log(%) ‘—)

Not All FPRASs are Equal: Demystifying FPRASs for DNF-Counting Kuldeep S. Meel, Aditya A. Shrotri, Moshe Y. Vardi 9/5/2018



1. Can hashing — based approach have same complexity as Monte
Carlo?

2. How do the various algorithms compare empirically?
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Our Contribution

In this work:
Improved complexity of hashing — based algorithm

Improves practical performance

First comprehensive empirical evaluation of FPRASs for #DNF
Much more nuanced than complexity analysis alone
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Method 1: Monte Carlo Sampling

* Draw independent samples from U
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Method 1: Monte Carlo Sampling

* Draw independent samples from U
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Method 1: Monte Carlo Sampling

* Draw independent samples from U

« Count samples that satisfy F
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Method 1: Monte Carlo Sampling

* Draw independent samples from U

« Count samples that satisfy F

He
" Hettte

. #F * |U|
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Method 1: Monte Carlo Sampling

Draw independent samples from U

Count samples that satisfy F

He
. H#F = * |U|
Hotito

Requwement s large

« Solution density plays crucial role
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Monte Carlo FPRAS

KL Counter [Karp, Luby, ‘83]

. Insight: Transform solution space

KLM Counter [Karp et al., ‘89] O(m-n- log(%) -giz)

. Insight: Sample using geometric distribution

. Vazirani Counter [Vazirani, '13]

. Insight: Low variance = fewer samples
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Method 2: Hashing-Based

U * Partition U into small cells

« Count solutions in a random cell ‘C_,

« #F=C_, * no. of cells
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Method 2: Hashing-Based

Partition U into small cells

-

Count solutions in a random cell ‘C_

#F = C_, * no. of cells

Requirements:
* Roughly equal solutions in each cell
* Right size of cell
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Method 2: Hashing-Based

Requirement: Roughly Equal Solutions in each cell

Solution: Hash Functions

. Conjunction of random XOR formulas
. h= Hl/\HZ N /\Hl

. h: 2" - 2!
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Method 2: Hashing-Based

Requirement: Right size cell

Solution: Count up to threshold T
. T depends on € and 0

C.osi >T = celltoo large

* Increase no. of constraints i

. FindisuchthatC.o;; < T
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Forward Search

Requirement: Right size partition

Solution: Count up to threshold T
FindisuchthatC..;; < T

=)

0
Ccell >T

Too large
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Forward Search

Requirement: Right size partition

Solution: Count up to threshold T
FindisuchthatC..;; < T

———>

0 1
Ccell >T Ccell >T

Too large  Too large
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Forward Search

. Requirement: Right size partition

. Solution: Count up to threshold T
FindisuchthatC..;; < T

—

0 1 2
Ccell >T Ccell >T Ccell >T

Toolarge Toolarge Too large
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Forward Search

. Requirement: Right size partition

. Solution: Count up to threshold T
FindisuchthatC..;; < T

S —

0 1 2 [—-1 [
Ccell >T Ccell >T Ccell >T Ccell >T Ccell <T
Toolarge Toolarge Too large Too large Perfect

. #F=C _, * 2!

cell
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Hashing-Based FPRAS

1. DNFApproxMC [Chakraborty et al., ‘16]
. Insight: Satisfiability of partitioned DNF formulas is polytime

2. SymbolicDNFApproxMC [Meel et al., ‘17] ﬁ(m ‘n - log(%) -giz)

. Insight: Symbolic hash constraints applied to transformed space
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Forward Search

. Requirement: Right size partition

. Solution: Count up to threshold T
Findisuchthat C..;; < T

S —

0 1 2 [—-1 [
Ccell >T Ccell >T Ccell >T Ccell >T Ccell <T
Toolarge Toolarge Too large Too large Perfect

. #F=C _, * 2!

cell

Drawback: Re-enumerates solutions multiple times
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Reverse Search

. Insight: Search in reverse direction |

0 1 2 [—1 [ n-1 n
Ccell >T Ccell >T Ccell >T Ccell >T Ccell <T Ccell <T Ccell <T
Too large Too large Too large Too large  Perfect Too small Too small

. Advantages:
Each solution is enumerated exactly once
. lis close to n for DNF formulas
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Reverse Search

. Insight: Search in reverse direction |

0 1 2 [—1 [ n-1 n
Ccell >T Ccell >T Ccell >T Ccell >T Ccell <T Ccell <T Ccell <T
Too large Too large Too large Too large  Perfect Too small Too small

. Advantages:
Each solution is enumerated exactly once
. lis close to n for DNF formulas

. Theorem: The complexity of SymbolicDNFApproxMC with
Reverse SearchisO(m -n - log(%) -812)
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Reverse Search vs. Forward Search
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900+ benchmarks
« X-axis: Time taken by Binary Search
» Y-axis: Time taken by Reverse

Search

Reverse Search is 4-5 times faster!
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Experiments: Algorithms

Monte Carlo — Based

. KL Counter o(m?-n- log(%) '8%)
. Vazirani Counter O(m2 "n- 109(%) giz
. KLM Counter O(m-n- 109(%) giz

Hashing — Based
. DNFApproxMC oO(m-n? - 109(%) giz

. SymbolicDNFApproxMC O(m-n- log(%) -giz)
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Runtime Variation

1. Runtime Variation: How does the running time of the
algorithms vary across different benchmarks?
Parameters
* Hvars=100,000

e f#icubes€e[10% 8 X 10°]
e Cube width € {3, 13, 23, 33, 43}

20 random benchmarks for each setting of parameters
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Runtime Variation

Comparison of Running Times (Cube Width = 3)
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Runtime Variation

Comparison of Running Times (Cube Width = 23)
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Total Benchmarks Solved

2. Total Benchmarks Solved: How many benchmarks can the
algorithms solve overall?

Measures raw problem solving ability

Same 900 benchmarks as Runtime Variation
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Total Benchmarks Solved

Comparison of Number of benchmarks solved
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Other Experiments

1. Runtime Variation: How does the running time of the
algorithms vary across different benchmarks?

2. Total Benchmarks Solved: How many benchmarks can the
algorithms solve overall?

3. Accuracy: How accurate are the counts returned by the
algorithms?

¢ € — O Scalability: How do the algorithms scale with the input
tolerance and confidence?
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Theory:
Introduced Reverse Search for hashing — based counting

Improved the complexity of hashing FPRAS by polylog factors
4 -5 times speedup in practice
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. Empirical Evaluation

Presented nuanced picture
 Different algorithms are well suited for different formula types

. Algorithm with poor time complexity (DNFApproxVIC) is most robust
and solves largest number of benchmarks

. Takeaways for practitioners:
* High solution density = use KLM Counter
* Low or unknown solution density = use DNFApproxVIC
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Future Directions

New counter that is robust as DNFApproxMC and fast as KLIVI
Counter?

. Portfolio of algorithms approach

. Real-world adoption of techniques

. Break vicious cycle

. Study effect of Reverse Search on CNF and SMT Counting
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Backup Slides
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Experiments: Accuracy

Algorithm Mean Error Max Error
DNFApproxMC 0.09 0.36
SymbolicDNFApproxMC 0.21 0.42
KLM Counter 0.11 0.55
KL Counter 0.007 0.20
Vazirani Counter 0.001 0.04

Not All FPRASs are Equal: Demystifying FPRASs for DNF-Counting Kuldeep S. Meel, Aditya A. Shrotri, Moshe Y. Vardi 9/5/2018



Experiments: € — 0 Scalability

Scaling of Algorithms with Epsilon Scaling of Algorithms with Delta
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