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Boolean formulas•

Variables take values T/F •

Logical Operations AND, OR, NOT, XOR • …

Formula encodings:•

Conjunctive Normal Form  (CNF)              •

(X• 1 ∨ ¬X2 ∨ ¬X3 ) ∧ (¬X1 ∨ X4) ∧..

Disjunctive Normal Form  (DNF)              •

(X• 1 ∧ ¬X2 ∧ ¬X3 ) ∨ (¬X1 ∧ X4) ∨..

At a glance
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• Counting Problem

• number of satisfying assignments?

• DNF-Counting Applications

• Probabilistic Databases 

• Network Reliability

• CNF-Counting Applications

• Probabilistic Inference

• Information Leakage

At a glance
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• Counting problem is hard [Valiant,’79]

• “#P-Complete”

• Relaxation: Approximate Counting

• Challenge: Efficiently find an approximate answer that is guaranteed to 
be close

At a glance
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Hash functions show promise!•

Hashing• -based Approximate CNF-Counting

Improvements over • 5+ years 

[Chakraborty et al. • ’13,’14,’16] 

Scales to large formulas•

Hashing• -based Approximate DNF-Counting [Chakraborty et al. ‘16]

At a glance
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• Hash functions show promise!

• Hashing-based Approximate CNF-Counting

• Improvements over 5+ years 

• [Chakraborty et al. ’13,’14,’16] 

• Scales to large formulas

• Hashing-based Approximate DNF-Counting [Chakraborty et al. ‘16]

• Poor time complexity

At a glance

9/5/2018On Hashing-Based Approaches to Approximate DNF Counting                                                                         Kuldeep S. Meel, Aditya A. Shrotri, Moshe Y. Vardi 6



Problem• :

• Approximate DNF-Counting

Our Solution Strategy• : 

Design • efficient hashing techniques

Contributions•

3 • algorithmic improvements to the hashing framework

Result•

Reduction in complexity from cubic to linear•

Significance•

Power and versatility of hashing•

At a glance
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Boolean Formulas and the 

Counting problem



 = ¬𝑋1 ∧ 𝑋2 ∨ 𝑋2 ∧ 𝑋3 ∨ (𝑋1 ∧ 𝑋3)

Disjunctive Normal Form

9/5/2018On Hashing-Based Approaches to Approximate DNF Counting                                                                         Kuldeep S. Meel, Aditya A. Shrotri, Moshe Y. Vardi 9



 = ¬𝑋1 ∧ 𝑋2 ∨ 𝑋2 ∧ 𝑋3 ∨ (𝑋1 ∧ 𝑋3)

# variables n = • 3

Disjunctive Normal Form
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 = ¬𝑋1 ∧ 𝑋2 ∨ 𝑋2 ∧ 𝑋3 ∨ (𝑋1 ∧ 𝑋3)

Cubes:          C1 C2 C3

Disjunctive Normal Form
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 = ¬𝑋1 ∧ 𝑋2 ∨ 𝑋2 ∧ 𝑋3 ∨ (𝑋1 ∧ 𝑋3)

Cubes:          C1 C2 C3

# cubes m = • 3

Disjunctive Normal Form
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 = ¬𝑋1 ∧ 𝑋2 ∨ 𝑋2 ∧ 𝑋3 ∨ (𝑋1 ∧ 𝑋3)

• Assignment: X1 = F , X2 = T , X3 = T

Disjunctive Normal Form
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 = ¬𝑋1 ∧ 𝑋2 ∨ 𝑋2 ∧ 𝑋3 ∨ (𝑋1 ∧ 𝑋3)

• Assignment: X1 = F , X2 = T , X3 = T

(¬F ∧ T )  ∨ (T ∧T )  ∨ (F ∧ T )

= T ∨ T ∨ F

= T

Disjunctive Normal Form
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 = ¬𝑋1 ∧ 𝑋2 ∨ 𝑋2 ∧ 𝑋3 ∨ (𝑋1 ∧ 𝑋3)

Assignment: X• 1 = F , X2 = T , X3 = T

σ = <• 0, 1, 1>

σ satisfies C• 2  ⇒ σ satisfies 
σ • ⊨ C2

σ • ⊨ 

Disjunctive Normal Form
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 = ¬𝑋1 ∧ 𝑋2 ∨ 𝑋2 ∧ 𝑋3 ∨ (𝑋1 ∧ 𝑋3)

• Assignment: X1 = F , X2 = T , X3 = T

• σ = <0, 1, 1>

• σ satisfies C2  ⇒ σ satisfies 
• σ ⊨ C2

• σ ⊨ 

• Checking σ ⊨  takes linear time

Disjunctive Normal Form
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 = ¬𝑋1 ∧ 𝑋2 ∨ 𝑋2 ∧ 𝑋3 ∨ (𝑋1 ∧ 𝑋3)

Universe of assignments U = {• 0,1}n

Disjunctive Normal Form
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 = ¬𝑋1 ∧ 𝑋2 ∨ 𝑋2 ∧ 𝑋3 ∨ (𝑋1 ∧ 𝑋3)

Universe of assignments U = {• 0,1}n

Set of solutions S•  = {  σ ∈ U : σ ⊨  }

Disjunctive Normal Form
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 = ¬𝑋1 ∧ 𝑋2 ∨ 𝑋2 ∧ 𝑋3 ∨ (𝑋1 ∧ 𝑋3)

Universe of assignments U = {• 0,1}n

Set of solutions S•  = {  σ ∈ U : σ ⊨  }

DNF• -Counting: Determine |S|   “Count of ”

Disjunctive Normal Form
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 = ¬𝑋1 ∧ 𝑋2 ∨ 𝑋2 ∧ 𝑋3 ∨ (𝑋1 ∧ 𝑋3)

• |U| = 23 = 8

• S = { <0, 1, 0> , <0, 1, 1> , <1,0,1>, <1, 1, 1> } 

• |S| = 4

DNF Counting Problem
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• Checking satisfiability

• UNSAT:  ..∨ ( .. ∧ Xi ∧ ¬Xi ∧ .. )  ∨ ..  

Hardness of DNF-Counting
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Enumerating satisfying assignments•

•  = (X1 ∧¬X2 ) ∨ (X3 ∧ X4) ∨ …

• <1 , 0, 0, 0>

• <1 , 0, 0, 1>

• <1 , 0, 1, 0>

• <1 , 0, 1, 1>

• 𝑆𝑐1 = {<1 , 0, 0, 0>, <1 , 0, 0, 1>, <1 , 0, 1, 0>, <1 , 0, 1, 1>}

Hardness of DNF-Counting

9/5/2018On Hashing-Based Approaches to Approximate DNF Counting                                                                         Kuldeep S. Meel, Aditya A. Shrotri, Moshe Y. Vardi 22



• Enumerating satisfying assignments

•  = (X1 ∧¬X2 ) ∨ (X3 ∧ X4) ∨ …

• <1 , 0, 0, 0>

• <1 , 0, 0, 1>

• <1 , 0, 1, 0>

• <1 , 0, 1, 1>

• 𝑆𝑐1 = {<1 , 0, 0, 0>, <1 , 0, 0, 1>, <1 , 0, 1, 0>, <1 , 0, 1, 1>}

• 𝑆𝑐1 ∩ 𝑆𝑐2 is not empty

Hardness of DNF-Counting

9/5/2018On Hashing-Based Approaches to Approximate DNF Counting                                                                         Kuldeep S. Meel, Aditya A. Shrotri, Moshe Y. Vardi 23



Enumerating satisfying assignments•

•  = (X1 ∧¬X2 ) ∨ (X3 ∧ X4) ∨ …

• <1 , 0, 0, 0>

• <1 , 0, 0, 1>

• <1 , 0, 1, 0>

• <1 , 0, 1, 1>

• 𝑆𝑐1 = {<1 , 0, 0, 0>, <1 , 0, 0, 1>, <1 , 0, 1, 0>, <1 , 0, 1, 1>}

• 𝑆𝑐1 ∩ 𝑆𝑐2 is not empty     ⇒ |S| = |𝑆𝑐1 ∪ 𝑆𝑐2 ∪ 𝑆𝑐3 … ∪ 𝑆𝑐𝑚|

Hardness of DNF-Counting
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DNF• -Counting is #P-Complete [Valiant,’79]

Class contains entire Polynomial Hierarchy!•

Need to Approximate!•

Hardness of DNF-Counting
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Input: DNF Formula 

Tolerance ε              0 < ε < 1

Confidence δ          0 < δ < 1

Output: Approximate Count C s.t.

Pr [|S|⋅(1-ε) < C < |S|⋅(1+ε) ] > 1-δ

Approximate DNF-Counting
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Input: DNF Formula 

Tolerance ε              0 < ε < 1

Confidence δ          0 < δ < 1

Output: Approximate Count C s.t.

Pr [|S|⋅(1-ε) < C < |S|⋅(1+ε) ] > 1-δ

Challenge: Design a poly(m, n, 
1

𝜖
, log(

1

𝛿
)) time algorithm “FPRAS”

Approximate DNF-Counting
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where m = #cubes       n = #vars



Monte Carlo Sampling for Approximate DNF1. -Counting

[Karp, 1. Luby ‘83]

[Karp, 2. Luby, Madras ‘89]

3. [Dagum, Karp, Luby, Ross ‘00]

Hashing2. -Based Algorithms for Approximate DNF-Counting

Originated with [1. Sipser, ‘83], [Bellare et al. ‘98 ], [Gomes et al. ‘06] 

DNF2. -Counting FPRAS: [Chakraborty et al., ‘16]

Previous Work
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Randomized algorithms based on drawing independent samples •

Method 1: Monte Carlo Sampling
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Randomized algorithms based on drawing independent samples •

Method 1: Monte Carlo Sampling
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U

S

Randomly sample from U•

• “Throwing darts”



Randomized algorithms based on drawing independent samples •

Method 1: Monte Carlo Sampling
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U

S

Randomly sample from U•

• “Throwing darts”

Count darts on target•

|S• | ≈ 
#•

#•+#•
* |U|



Randomized algorithms based on drawing independent samples •

Method 1: Monte Carlo Sampling
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U

S

Randomly sample from U•

• “Throwing darts”

Count darts on target•

|S• | ≈ 
#•

#•+#•
* |U|

𝑂• (𝑚 ⋅ 𝑛 ⋅ 𝑙𝑜𝑔(
1

𝛿
) ⋅

1

𝜀2
) [Karp et al., ‘89]

where m = #cubes       n = #vars



Method 2: Hashing - Based
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U

S

“Cutting slices of a pie”



Method 2: Hashing - Based
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Partition universe into • ‘cells’

U

S



Method 2: Hashing - Based
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Partition universe into • ‘cells’

Ensure • ‘roughly’ equal solutions to  in each cell
U

S



Method 2: Hashing - Based
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Partition universe into • ‘cells’

Ensure • ‘roughly’ equal solutions to  in each cell

Pick a cell at random•

U

S



Method 2: Hashing - Based
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U

S

Partition universe into • ‘cells’

Ensure • ‘roughly’ equal solutions to  in each cell

Pick a cell at random•

Count solutions only in the picked cell•



Method 2: Hashing - Based
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U

S

Partition universe into • ‘cells’

Ensure • ‘roughly’ equal solutions to  in each cell

Pick a cell at random•

Count solutions only in the picked cell•

Estimate count as #(solutions to •  in cell) x #cells



Method 2: Hashing - Based
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U

S

Partition universe into • ‘cells’

Hash function• : Conjunction of Hash Constraints

Hash Constraint:• Boolean formula randomly chosen 

from special set (Hash family)



Method 2: Hashing - Based
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U

S

Q1

• Partition universe into ‘cells’

• Hash function: Conjunction of Hash Constraints

• Hash Constraint: Boolean formula randomly chosen 

from special set (Hash family)



Method 2: Hashing - Based
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U

S

Q1

Partition universe into • ‘cells’

Hash function• : Conjunction of Hash Constraints

Hash Constraint:• Boolean formula randomly chosen 

from special set (Hash family)

• Q1 partitions U into 2 ‘cells’

• Q1 = 0

• Q1 = 1



Method 2: Hashing - Based
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U

S

Q1

Q2

• Partition universe into ‘cells’

• Hash function: Conjunction of Hash Constraints

• Hash Constraint: Boolean formula randomly chosen 

from special set (Hash family)

• Q1 , Q2 partitions U into 4 ‘cells’

• Q1 , Q2  ∈ {00 , 01, 10, 11}



Method 2: Hashing - Based
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U

S

• Partition universe into ‘cells’

• Hash function: Conjunction of Hash Constraints

• Hash Constraint: Boolean formula randomly chosen 

from special set (Hash family)

• Q1 , Q2 , Q3 …. , QL partitions U into 2L ‘cells’



Method 2: Hashing - Based
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U

S

• Partition universe into ‘cells’

• Hash function: Conjunction of Hash Constraints

• Hash Constraint: Boolean formula randomly chosen 

from special set (Hash family)

• Q1 , Q2 , Q3 …. , QL partitions U into 2L ‘cells’

• Ensure ‘roughly’ equal solutions to  in each cell



Method 2: Hashing - Based
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U

S

• Partition universe into ‘cells’

• Hash function: Conjunction of Hash Constraints

• Hash Constraint: Boolean formula randomly chosen 

from special set (Hash family)

• Q1 , Q2 , Q3 …. , QL partitions U into 2L ‘cells’

• Ensure ‘roughly’ equal solutions to  in each cell

• Use 2-universal Hash Families



Method 2: Hashing - Based
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U

S

• Partition universe into ‘cells’

• Hash function: Conjunction of Hash Constraints

• Hash Constraint: Boolean formula randomly chosen 

from special set (Hash family)

• Q1 , Q2 , Q3 …. , QL partitions U into 2L ‘cells’

• Ensure ‘roughly’ equal solutions to  in each cell

• Use 2-universal Hash Families

• Pick cell at random

• Q1Q2Q3 …. QL = 0100…1



Method 2: Hashing - Based
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U

S

• Partition universe into ‘cells’

• Hash function: Conjunction of Hash Constraints

• Hash Constraint: Boolean formula randomly chosen 

from special set (Hash family)

• Q1 , Q2 , Q3 …. , QL partitions U into 2L ‘cells’

• Ensure ‘roughly’ equal solutions to  in each cell

• Use 2-universal Hash Families

• Pick cell at random

• Q1Q2Q3 …. QL = 0100…1

• Count solutions in the picked cell

• ’ =  ∧ Q

• Q =(Q1 ⇔ 0) ∧ (Q2 ⇔ 1) ∧ (Q3 ⇔ 0) .. (QL ⇔ 1)

• Calculate |S’|



Method 2: Hashing - Based
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U

S

• Partition universe into ‘cells’

• Hash function: Conjunction of Hash Constraints

• Hash Constraint: Boolean formula randomly chosen 

from special set (Hash family)

• Q1 , Q2 , Q3 …. , QL partitions U into 2L ‘cells’

• Ensure ‘roughly’ equal solutions to  in each cell

• Use 2-universal Hash Families

• Pick cell at random

• Q1Q2Q3 …. QL = 0100…1

• Count solutions in the picked cell

• ’ =  ∧ Q

• Q =(Q1 ⇔ 0) ∧ (Q2 ⇔ 1) ∧ (Q3 ⇔ 0) .. (QL ⇔ 1)

• Calculate |S’|

• Estimate count as #(solutions to  in cell) x #cells

• |S| ≈ |S’|  x (# cells)



Monte Carlo Sampling

• “Dart Throwing”

DNF• -Counting

Complexity:   • 𝑂(𝑚 ⋅ 𝑛 ⋅ 𝑙𝑜𝑔(
1

𝛿
) ⋅

1

𝜀2
)

[Karp et al., • ’89]

Hashing Based

• “Pie Slicing”

• DNF-Counting

• Complexity: 𝑂(𝑚 ⋅ 𝑛3 ⋅ 𝑙𝑜𝑔(
1

𝛿
) ⋅

1

𝜀2
)

• ‘ApproxMC’ [Chakraborty et al., ’16]

Comparison of Approaches

9/5/2018On Hashing-Based Approaches to Approximate DNF Counting                                                                         Kuldeep S. Meel, Aditya A. Shrotri, Moshe Y. Vardi 49

where m = #cubes       n = #vars



Monte Carlo Sampling

• “Dart Throwing”

• DNF-Counting

• Complexity:   𝑂(𝑚 ⋅ 𝑛 ⋅ 𝑙𝑜𝑔(
1

𝛿
) ⋅

1

𝜀2
)

• [Karp et al., ’89]

• CNF-Counting
• Does not scale well

Hashing Based

• “Pie Slicing”

• DNF-Counting

• Complexity: 𝑂(𝑚 ⋅ 𝑛3 ⋅ 𝑙𝑜𝑔(
1

𝛿
) ⋅

1

𝜀2
)

• ‘ApproxMC’ [Chakraborty et al., ’16]

• CNF-Counting
• Very successful in practice

Comparison of Approaches
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where m = #cubes       n = #vars



Power of Hashing?•

Can • ApproxMC be made competitive with state-of-the-art?

Motivating Questions
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Better Hashing techniques for Approximate DNF-Counting

Row Echelon Hash Family•

Symbolic Hashing•

Stochastic Cell• -Counting

Contributions
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Row Echelon Hash Family



Boolean Formulas with only XOR • ⊕

• 2-Universal

Sampling procedure:•

Pick each variable with probability • 0.5

XOR picked variables•

XOR Family of Hash Functions
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Sample each constraint at random (n=• 7)

• Q1 =  X1 ⊕ X4 ⊕ X5

• Q2 =  X3 ⊕ X4 ⊕ X6 ⊕ X7

• …

• QL = X2 ⊕ X4 ⊕ X6

XOR Family: Hash Matrix
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Sample each constraint at random (n=• 7)

• Q1 =  X1 ⊕ X4 ⊕ X5

• Q2 =  X3 ⊕ X4 ⊕ X6 ⊕ X7

• …

• QL = X2 ⊕ X4 ⊕ X6

Equivalent to sampling a • 0/1 matrix of dimension L x 7
X1 ⊕ X4 ⊕ X5                                               1  0  0  1  1  0  0

∧ X3 ⊕ X4 ⊕ X6 ⊕ X7 ⇒ 0  0  1  1  0  1  1

∧ ..                                                    …

∧ X2 ⊕ X4 ⊕ X6 0  1  0  1  0  1  0

XOR Family: Hash Matrix
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L

N=7



Sample a hash matrix1.

• Q1 =  X1 ⊕ X4 ⊕ X5

• Q2 =  X3 ⊕ X4 ⊕ X6 ⊕ X7

• …

• QL = X2 ⊕ X4 ⊕ X6

Pick a cell  (L bits) at random2.

10• …1

Count solutions to 3.  in cell

• ’ =  ∧ Q       where Q = (Q1 ⇔ 1)∧ (Q2 ⇔ 0) ∧ .. (QL ⇔ 1)

Need to find |S• ’|

XOR Family: Counting using XORs
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1. Sample a hash matrix

• Q1 =  X1 ⊕ X4 ⊕ X5

• Q2 =  X3 ⊕ X4 ⊕ X6 ⊕ X7

• …

• QL = X2 ⊕ X4 ⊕ X6

2. Pick a cell  (L bits) at random

• 10…1

3. Count solutions to  in cell

• ’ =  ∧ Q       where Q = (Q1 ⇔ 1)∧ (Q2 ⇔ 0) ∧ .. (QL ⇔ 1)

• Need to find |S’| :  Enumerate solutions to Q and check if satisfy 

XOR Family: Counting using XORs
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Constraints                              Cell                              Hash Matrix                   Cell Vector   

X1 ⊕ X4 ⊕ X5                           =         1                             1  0  0  1  1  0  0       X1 1

∧ X3 ⊕ X4 ⊕ X6 ⊕ X7 =         0          ⇒ 0  0  1  1  0  1  1       X2 =      0 

∧ …                                              ..                              …                             ..              ..

∧ X2 ⊕ X4 ⊕ X6 =         1                              0  1  0  1  0  1  0       X7 1

Q is a system of linear equations (mod • 2)

Simplify using Gaussian Elimination!•

XOR Family: Enumerating Solutions
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•

1 0 1 . . 1
1 1 0 . . 1
0 1 0 . . 1
. . . . . . . . . .
0 1 0 1 0

𝑋1
𝑋2

. .
𝑋𝑛′

=

1
0
1. .
. .
1

𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛
𝐸𝑙𝑖𝑚𝑖.

1 0 0 0 . . 1
0 1 0 1 . . 1
0 0 1 1 . . 1
0 0 0 0 . . 0
. . . . . . . . . . . .
0 0 0 0 0 0

𝑋1
𝑋2

. .
𝑋𝑛′

=

0
1
0. .
. .
1

Row Echelon Form:•

First block is the identity matrix•

Zero rows after non• -zero rows

XOR Hash: Gaussian Elimination
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Row Echelon Form



•

1 0 1 . . 1
1 1 0 . . 1
0 1 0 . . 1
. . . . . . . . . .
0 1 0 1 0

𝑋1
𝑋2

. .
𝑋𝑛′

=

1
0
1. .
. .
1

𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛
𝐸𝑙𝑖𝑚𝑖.

1 0 0 0 . . 1
0 1 0 1 . . 1
0 0 1 1 . . 1
0 0 0 0 . . 0
. . . . . . . . . . . .
0 0 0 0 0 0

𝑋1
𝑋2

. .
𝑋𝑛′

=

0
1
0. .
. .
1

Row Echelon Form:•

First block is the identity matrix•

Zero rows after non• -zero rows

Drawback: Gaussian Elimination is O(n• 3)

ApproxMC• Complexity  𝑂(𝑚 ⋅ 𝑛3 ⋅ 𝑙𝑜𝑔(
1

𝛿
) ⋅

1

𝜀2
)

XOR Hash: Gaussian Elimination
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Row Echelon Form



1 0 0. . 0 1 1
0 1 0. . 0 1 1
0 0 1. . 0 0 0
. . . . . . . . . . . .
0 0 0. . 1 1 1

𝑋1
𝑋2

. .
𝑋𝑛

=

0
1
0. .
1

Sample a hash matrix in Row-Echelon form directly!

Row Echelon Hash Family
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L

n



1 0 0. . 0 𝟏 𝟏
0 1 0. . 0 𝟏 𝟏
0 0 1. . 0 𝟎 𝟎
. . . . . . . . . . . .
0 0 0. . 1 𝟏 𝟏

𝑋1
𝑋2

. .
𝑋𝑛

=

0
1
0. .
1

Sample a hash matrix in Row-Echelon form directly!

• Only sample 𝐿 × (𝑛 − 𝐿) non-identity part

Row Echelon Hash Family
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L

n



1 0 0. . 0 𝟏 𝟏
0 1 0. . 0 𝟏 𝟏
0 0 1. . 0 𝟎 𝟎
. . . . . . . . . . . .
0 0 0. . 1 𝟏 𝟏

𝑋1
𝑋2

. .
𝑋𝑛

=

0
1
0. .
1

Sample a hash matrix in Row-Echelon form directly!

• Only sample 𝐿 × (𝑛 − 𝐿) non-identity part

• Eliminates expensive Gaussian Elimination step

Row Echelon Hash Family

9/5/2018On Hashing-Based Approaches to Approximate DNF Counting                                                                         Kuldeep S. Meel, Aditya A. Shrotri, Moshe Y. Vardi 64

L

n



1 0 0. . 0 𝟏 𝟏
0 1 0. . 0 𝟏 𝟏
0 0 1. . 0 𝟎 𝟎
. . . . . . . . . . . .
0 0 0. . 1 𝟏 𝟏

𝑋1
𝑋2

. .
𝑋𝑛

=

0
1
0. .
1

Sample a hash matrix in Row-Echelon form directly!

• Only sample 𝐿 × (𝑛 − 𝐿) non-identity part

• Eliminates expensive Gaussian Elimination step

• Is it 2-Universal?

Row Echelon Hash Family
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L

n



1 0 0. . 0 𝟏 𝟏
0 1 0. . 0 𝟏 𝟏
0 0 1. . 0 𝟎 𝟎
. . . . . . . . . . . .
0 0 0. . 1 𝟏 𝟏

𝑋1
𝑋2

. .
𝑋𝑛

=

0
1
0. .
1

Sample a hash matrix in Row-Echelon form directly!

• Only sample 𝐿 × (𝑛 − 𝐿) non-identity part

• Eliminates expensive Gaussian Elimination step

• Is it 2-Universal?     Yes!

• Theorem: Row-Echelon Family is 2-Universal

Row Echelon Hash Family
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L

n



XOR Hash Family

O(n•
2) space

O(n•
3) time to generate (Gaussian Elim.)

O(n•
2) time to enumerate one solution

Row Echelon Hash Family

O(n•
2) space

O(n•
2) time (Sampling the matrix)

O(n) time to enumerate one solution•

Hash Family Comparison
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where m = #cubes       n = #vars



XOR Hash Family

O(n•
2) space

O(n•
3) time to generate (Gaussian Elim.)

O(n•
2) time to enumerate one solution

Complexity of • ApproxMC (XOR hash) 
[Chakraborty et al, ‘16]: 

𝑂(𝑚 ⋅ 𝑛3 ⋅ 𝑙𝑜𝑔(
1

𝛿
) ⋅

1

𝜀2
)

Row Echelon Hash Family

O(n•
2) space

O(n•
2) time (Sampling the matrix)

O(n) time to enumerate one solution•

Complexity of • ApproxMC with RE 
hash: 

𝑂(𝑚 ⋅ 𝑛2 ⋅ 𝑙𝑜𝑔(
1

𝛿
) ⋅

1

𝜀2
)

Hash Family Comparison
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where m = #cubes       n = #vars



XOR Hash Family

O(n•
2) space

O(n•
3) time to generate (Gaussian Elim.)

O(n•
2) time to enumerate one solution

Complexity of • ApproxMC (XOR hash) 
[Chakraborty et al, ‘16]: 

𝑂(𝑚 ⋅ 𝑛3 ⋅ 𝑙𝑜𝑔(
1

𝛿
) ⋅

1

𝜀2
)

Row Echelon Hash Family

• O(n2) space

• O(n2) time (Sampling the matrix)

• O(n) time to enumerate one solution

• Complexity of ApproxMC with RE 
hash: 

𝑂(𝑚 ⋅ 𝑛2 ⋅ 𝑙𝑜𝑔(
1

𝛿
) ⋅

1

𝜀2
)

Hash Family Comparison
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Karp et al. Algorithm: 𝑂(𝑚 ⋅ 𝑛 ⋅ 𝑙𝑜𝑔(
1

𝛿
) ⋅

1

𝜀2
)
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Symbolic Hashing and 

Stochastic Cell-Counting



Time to sample a matrix from RE family:    • 𝐿 × (𝑛 − 𝐿)

If    L • ≈  n   then    sample time  =  O(n) 

Room for Improvement
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• Time to sample a matrix from RE family:    𝐿 × (𝑛 − 𝐿)

• If    L ≈  n   then    sample time  =  O(n) 

• L  ≈ n     when       |S| ≈ |U|

Room for Improvement
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• Time to sample a matrix from RE family:    𝐿 × (𝑛 − 𝐿)

• If    L ≈  n   then    sample time  =  O(n) 

• L  ≈ n     when       |S| ≈ |U| 

• But  |S|  can be much smaller than  |U|

• Exponentially smaller in worst case

Room for Improvement
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Transform U  to U1. ’     [Karp et al., ‘83]

|S• | is polynomially smaller than  |U’| in worst case

Hash over the transformed universe U2. ’  (our contribution)

Symbolic Hashing: Outline
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Transform U  to U1. ’     [Karp et al., ‘83]

U = {• 0,1}n

Set of all assignments • σ

Includes satisfying and unsatisfying assignments to • 

Symbolic Hashing: Space Transform

9/5/2018On Hashing-Based Approaches to Approximate DNF Counting                                                                         Kuldeep S. Meel, Aditya A. Shrotri, Moshe Y. Vardi 75



Transform U  to U1. ’     [Karp et al., ‘83]

• U’ = { (σ , Ci ) | σ ⊨ Ci }

Multiset of satisfying assignments  ( Recall: σ • ⊨Ci ⇒ σ ⊨  )

Each • σ occurs at most m = #cubes times

|U• ’ | ⩽ m.|S|

Symbolic Hashing: Space Transform

9/5/2018On Hashing-Based Approaches to Approximate DNF Counting                                                                         Kuldeep S. Meel, Aditya A. Shrotri, Moshe Y. Vardi 76



 = (¬X1 ∧ X2 )  ∨ (X2 ∧X3 ) ∨ ( X1 ∧ X3 )

Symbolic Hashing: Space Transform Example

|U| = 8

|S| = 4

|U| ⩽ 2.|S|
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<0,0,1>

<1,0,0><1,1,0>

<0,0,0>U

<0,1,1> <1,0,1>

<0,1,0><1,1,1>

S



 = (¬X1 ∧ X2 )  ∨ (X2 ∧X3 ) ∨ ( X1 ∧ X3 )

Symbolic Hashing: Space Transform Example

|U| = 8

|S| = 4

|U| ⩽ 2.|S|
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|U’| = 6

|S| = 4

|U’ | ⩽ 1.5 |S|

<0,0,1>

<1,0,0><1,1,0>

<0,0,0>U

<0,1,1>, C2

<0,1,1>, C1

<1,1,1>, C3

<1,0,1>, C3

<1,1,1>, C2

<0,1,0>, C1

U’

<0,1,1> <1,0,1>

<0,1,0><1,1,1>

S



Partition U2. ’ = { (σ , Ci ) | σ ⊨ Ci }

Use hash constraints with • n + log(m) variables

• X1  … Xn

• Y1 … Ylog(m)        - auxiliary variables

• “Bit-Blasting” 

First n bits select • σ

Last log(m) bits select C• i

Binary representation of the index • i

Symbolic Hashing: Hashing over U’
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where m = #cubes       n = #vars



Symbolic Hashing: Counting over U’
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(𝝈𝒋𝟐 , 𝑪𝒊𝟐)

(𝝈𝒋𝟏 , 𝑪𝒊𝟏)

(𝝈𝒋𝟒 , 𝑪𝒊𝟒)

(𝝈𝒋𝟓 , 𝑪𝒊𝟓)

(𝝈𝒋𝟕 , 𝑪𝒊𝟕)
(𝝈𝒋𝟓 , 𝑪𝒊𝟓)

U’
(𝝈𝒋𝟑 , 𝑪𝒊𝟑)

(𝝈𝒋𝟔 , 𝑪𝒊𝟔)



Symbolic Hashing: Counting over U’

9/5/2018On Hashing-Based Approaches to Approximate DNF Counting                                                                         Kuldeep S. Meel, Aditya A. Shrotri, Moshe Y. Vardi 81

1) Add constraints ..

(𝝈𝒋𝟐 , 𝑪𝒊𝟐)

(𝝈𝒋𝟏 , 𝑪𝒊𝟏)

(𝝈𝒋𝟒 , 𝑪𝒊𝟒)

(𝝈𝒋𝟓 , 𝑪𝒊𝟓)

(𝝈𝒋𝟕 , 𝑪𝒊𝟕)
(𝝈𝒋𝟓 , 𝑪𝒊𝟓)

U’
(𝝈𝒋𝟑 , 𝑪𝒊𝟑)

(𝝈𝒋𝟔 , 𝑪𝒊𝟔)



(𝝈𝒋𝟐 , 𝑪𝒊𝟐)

(𝝈𝒋𝟏 , 𝑪𝒊𝟏)

(𝝈𝒋𝟒 , 𝑪𝒊𝟒)

(𝝈𝒋𝟓 , 𝑪𝒊𝟓)

(𝝈𝒋𝟕 , 𝑪𝒊𝟕)
(𝝈𝒋𝟓 , 𝑪𝒊𝟓)

U’
(𝝈𝒋𝟑 , 𝑪𝒊𝟑)

(𝝈𝒋𝟔 , 𝑪𝒊𝟔)

Symbolic Hashing: Counting over U’
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1) Add constraints : Q1



(𝝈𝒋𝟐 , 𝑪𝒊𝟐)

(𝝈𝒋𝟏 , 𝑪𝒊𝟏)

(𝝈𝒋𝟒 , 𝑪𝒊𝟒)

(𝝈𝒋𝟓 , 𝑪𝒊𝟓)

(𝝈𝒋𝟕 , 𝑪𝒊𝟕)
(𝝈𝒋𝟓 , 𝑪𝒊𝟓)

U’
(𝝈𝒋𝟑 , 𝑪𝒊𝟑)

(𝝈𝒋𝟔 , 𝑪𝒊𝟔)

Symbolic Hashing: Counting over U’
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1) Add constraints : Q1 , Q2



(𝝈𝒋𝟐 , 𝑪𝒊𝟐)

(𝝈𝒋𝟏 , 𝑪𝒊𝟏)

(𝝈𝒋𝟒 , 𝑪𝒊𝟒)

(𝝈𝒋𝟓 , 𝑪𝒊𝟓)

(𝝈𝒋𝟕 , 𝑪𝒊𝟕)
(𝝈𝒋𝟓 , 𝑪𝒊𝟓)

U’
(𝝈𝒋𝟑 , 𝑪𝒊𝟑)

(𝝈𝒋𝟔 , 𝑪𝒊𝟔)

Symbolic Hashing: Counting over U’
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1) Add constraints : Q1 , Q2 , … , QL



(𝝈𝒋𝟐 , 𝑪𝒊𝟐)

(𝝈𝒋𝟏 , 𝑪𝒊𝟏)

(𝝈𝒋𝟒 , 𝑪𝒊𝟒)

(𝝈𝒋𝟓 , 𝑪𝒊𝟓)

(𝝈𝒋𝟕 , 𝑪𝒊𝟕)
(𝝈𝒋𝟓 , 𝑪𝒊𝟓)

U’
(𝝈𝒋𝟑 , 𝑪𝒊𝟑)

(𝝈𝒋𝟔 , 𝑪𝒊𝟔)

Symbolic Hashing: Counting over U’
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1) Add constraints : Q1 , Q2 , … , QL

2) Pick a cell at random



(𝝈𝒋𝟐 , 𝑪𝒊𝟐)

(𝝈𝒋𝟏 , 𝑪𝒊𝟏)

(𝝈𝒋𝟒 , 𝑪𝒊𝟒)

(𝝈𝒋𝟓 , 𝑪𝒊𝟓)

(𝝈𝒋𝟕 , 𝑪𝒊𝟕)
(𝝈𝒋𝟓 , 𝑪𝒊𝟓)

U’
(𝝈𝒋𝟑 , 𝑪𝒊𝟑)

(𝝈𝒋𝟔 , 𝑪𝒊𝟔)

Symbolic Hashing: Counting over U’
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Add constraints : Q1) 1 , Q2 , … , QL

Pick a cell at random2)

Estimate |S3) | ≈ |S’|  x (# cells)

Details in paper•



Theorem:• The estimate |S’| × 2L in U’ provides the required 
tolerance 𝜖 and confidence 𝛿

[Chakraborty et al. • ‘13, ‘16] imposed tight coupling between 
input formula and hash function

Removed this restriction•

• U’ is never explicitly constructed

Adapted ideas from Monte Carlo to Hashing•

Symbolic Hashing: Significance
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Idea: Use Monte Carlo within cell!•

Sample assignments uniformly from cell•

No need to calculate • |S’| exactly

Probabilistic estimate • Y ≈ |S’| adapting  [Karp et al., ‘89]

Theorem:• The estimate Y × 2L in U’ provides the required 
tolerance 𝜖 and confidence 𝛿

Stochastic Cell Counting
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DNF• -ApproxMC

Row Echelon Hash Functions•

Symbolic Hashing•

Stochastic Cell• -Counting

Theorem:• DNF-ApproxMC runs in time ෩𝑶(𝒎 ⋅ 𝒏 ⋅ 𝒍𝒐𝒈(
𝟏

𝜹
) ⋅

𝟏

𝜺𝟐
)

Complexity
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Problem:• Approximate DNF-Counting

Previous work• : Poor time complexity 

Our contributions• : Improvements to the hashing framework

Row Echelon Hash Family, Symbolic Hashing, Stochastic Cell Counting•

Result• : New complexity ෩𝑶(𝒎 ⋅ 𝒏 ⋅ 𝒍𝒐𝒈(
𝟏

𝜹
) ⋅

𝟏

𝜺𝟐
)

Significance: • General technique of hashing is as powerful as 
specialized technique of Monte Carlo for DNF-Counting! 

Summary
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Extend techniques to Weighted DNF• -Counting

Utilize techniques to improve CNF• -Counting

Techniques do not depend on encoding of formula•

Sparsity of Row Echelon • Hash functions

Future Work
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Theorem • 1: Row-Echelon Hash Family is 2-Universal

Theorem • 2: The estimate obtained from DNF-ApproxMC
provides the required tolerance 𝜖 and confidence 𝛿

Theorem • 3: DNF-ApproxMC runs in time ෩𝑶(𝒎 ⋅ 𝒏 ⋅ 𝒍𝒐𝒈(
𝟏

𝜹
) ⋅

𝟏

𝜺𝟐
)

Main Results
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Questions?

Thank you
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