

On Hashing-Based Approaches to Approximate DNF-Counting

Kuldeep S. Meel¹, **Aditya A. Shrotri²**, Moshe Y. Vardi²

¹ School of Computing, National University of Singapore ² Department of Computer Science, Rice University

- Boolean formulas
 - Variables take values T/F
 - Logical Operations AND, OR, NOT, XOR ...

- Formula encodings:
 - Conjunctive Normal Form (CNF)
 - $(X_1 \vee \neg X_2 \vee \neg X_3) \wedge (\neg X_1 \vee X_4) \wedge ...$
 - Disjunctive Normal Form (DNF)
 - $(X_1 \wedge \neg X_2 \wedge \neg X_3) \vee (\neg X_1 \wedge X_4) \vee ...$

- Counting Problem
 - number of satisfying assignments?

- DNF-Counting Applications
 - Probabilistic Databases
 - Network Reliability

- CNF-Counting Applications
 - Probabilistic Inference
 - Information Leakage

- Counting problem is hard [Valiant, 79]
 - "#P-Complete"

- Relaxation: Approximate Counting
 - Challenge: Efficiently find an approximate answer that is guaranteed to be close

Hash functions show promise!

- Hashing-based Approximate CNF-Counting
 - Improvements over 5+ years
 - [Chakraborty et al. '13,'14,'16]
 - Scales to large formulas
- Hashing-based Approximate DNF-Counting [Chakraborty et al. '16]

Hash functions show promise!

- Hashing-based Approximate CNF-Counting
 - Improvements over 5+ years
 - [Chakraborty et al. '13,'14,'16]
 - Scales to large formulas

- Hashing-based Approximate DNF-Counting [Chakraborty et al. '16]
 - Poor time complexity

Problem:

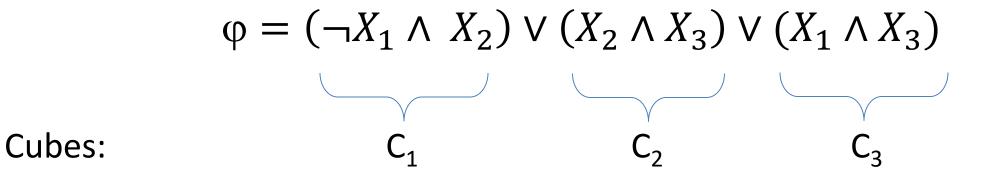
- Approximate DNF-Counting
- Our Solution Strategy:
 - Design efficient hashing techniques
- Contributions
 - 3 algorithmic improvements to the hashing framework
- Result
 - Reduction in complexity from cubic to linear
- Significance
 - Power and versatility of hashing

Boolean Formulas and the Counting problem

$$\varphi = (\neg X_1 \land X_2) \lor (X_2 \land X_3) \lor (X_1 \land X_3)$$

$$\varphi = (\neg X_1 \land X_2) \lor (X_2 \land X_3) \lor (X_1 \land X_3)$$

variables n = 3



$$\varphi = (\neg X_1 \land X_2) \lor (X_2 \land X_3) \lor (X_1 \land X_3)$$
Cubes:
$$C_1 \qquad C_2 \qquad C_3$$

• # cubes m = 3

$$\varphi = (\neg X_1 \land X_2) \lor (X_2 \land X_3) \lor (X_1 \land X_3)$$

• Assignment: $X_1 = F$, $X_2 = T$, $X_3 = T$

$$\varphi = (\neg X_1 \land X_2) \lor (X_2 \land X_3) \lor (X_1 \land X_3)$$

Assignment: $X_1 = F$, $X_2 = T$, $X_3 = T$

```
(\neg F \wedge T) \vee (T \wedge T) \vee (F \wedge T)
= T \vee T \vee F
= T
```

$$\varphi = (\neg X_1 \land X_2) \lor (X_2 \land X_3) \lor (X_1 \land X_3)$$

- Assignment: $X_1 = F$, $X_2 = T$, $X_3 = T$
 - $\sigma = <0, 1, 1>$
 - σ satisfies $C_2 \Rightarrow \sigma$ satisfies φ
 - $\sigma \models C_2$
 - $\sigma \models \phi$

$$\varphi = (\neg X_1 \land X_2) \lor (X_2 \land X_3) \lor (X_1 \land X_3)$$

- Assignment: $X_1 = F$, $X_2 = T$, $X_3 = T$
 - $\sigma = <0, 1, 1>$
 - σ satisfies $C_2 \Rightarrow \sigma$ satisfies φ
 - $\sigma \models C_2$
 - $\sigma \models \phi$
- Checking $\sigma \models \phi$ takes linear time

$$\varphi = (\neg X_1 \land X_2) \lor (X_2 \land X_3) \lor (X_1 \land X_3)$$

Universe of assignments U = {0,1}ⁿ

$$\varphi = (\neg X_1 \land X_2) \lor (X_2 \land X_3) \lor (X_1 \land X_3)$$

• Universe of assignments $U = \{0,1\}^n$

• Set of solutions $S_{\varphi} = \{ \sigma \in U : \sigma \models \varphi \}$

$$\varphi = (\neg X_1 \land X_2) \lor (X_2 \land X_3) \lor (X_1 \land X_3)$$

• Universe of assignments $U = \{0,1\}^n$

- Set of solutions $S_{\varphi} = \{ \sigma \in U : \sigma \models \varphi \}$
- DNF-Counting: Determine $|S_{\phi}|$ "Count of ϕ "

DNF Counting Problem

$$\varphi = (\neg X_1 \land X_2) \lor (X_2 \land X_3) \lor (X_1 \land X_3)$$

$$\cdot |U| = 2^3 = 8$$

•
$$S_{\phi} = \{ <0, 1, 0>, <0, 1, 1>, <1,0,1>, <1, 1, 1> \}$$

•
$$|S_{\varphi}| = 4$$

- Checking satisfiability
 - UNSAT: .. \vee (.. \wedge X_i \wedge \neg X_i \wedge ..) \vee ..

Enumerating satisfying assignments

```
• \varphi = (X_1 \land \neg X_2) \lor (X_3 \land X_4) \lor ...
```

- <1,0,0,0>
- <1,0,0,1>
- <1,0,1,0>
- <1,0,1,1>

• $S_{C_1} = \{<1, 0, 0, 0>, <1, 0, 0, 1>, <1, 0, 1, 0>, <1, 0, 1, 1>\}$

Enumerating satisfying assignments

•
$$\varphi = (X_1 \land \neg X_2) \lor (X_3 \land X_4) \lor ...$$

- <1,0,0,0>
- <1,0,0,1>
- <1,0,1,0>
- <1,0,1,1>

•
$$S_{c_1} = \{<1, 0, 0, 0>, <1, 0, 0, 1>, <1, 0, 1, 0>, <1, 0, 1, 1>\}$$

• $S_{c_1} \cap S_{c_2}$ is not empty

- Enumerating satisfying assignments
 - $\varphi = (X_1 \land \neg X_2) \lor (X_3 \land X_4) \lor ...$
 - <1,0,0,0>
 - <1,0,0,1>
 - <1,0,1,0>
 - <1,0,1,1>

• $S_{c_1} = \{<1, 0, 0, 0>, <1, 0, 0, 1>, <1, 0, 1, 0>, <1, 0, 1, 1>\}$

• $S_{c_1} \cap S_{c_2}$ is not empty \Rightarrow $|S_{\varphi}| = |S_{c_1} \cup S_{c_2} \cup S_{c_3} \dots \cup S_{c_m}|$

- DNF-Counting is #P-Complete [Valiant,'79]
 - Class contains entire Polynomial Hierarchy!

Need to Approximate!

Approximate DNF-Counting

Input: DNF Formula φ

Tolerance ϵ $0 < \epsilon < 1$

Confidence δ 0 < δ < 1

Output: Approximate Count C s.t.

Pr
$$[|S_{\phi}| \cdot (1-\epsilon) < C < |S_{\phi}| \cdot (1+\epsilon)] > 1-δ$$

Approximate DNF-Counting

Input: DNF Formula φ

Tolerance ε $0 < \varepsilon < 1$

Confidence δ 0 < δ < 1

Output: Approximate Count C s.t.

Pr
$$[|S_{\phi}| \cdot (1-\epsilon) < C < |S_{\phi}| \cdot (1+\epsilon)] > 1-δ$$

Challenge: Design a poly(m, n, $\frac{1}{\epsilon}$, $\log(\frac{1}{\delta})$) time algorithm "FPRAS"

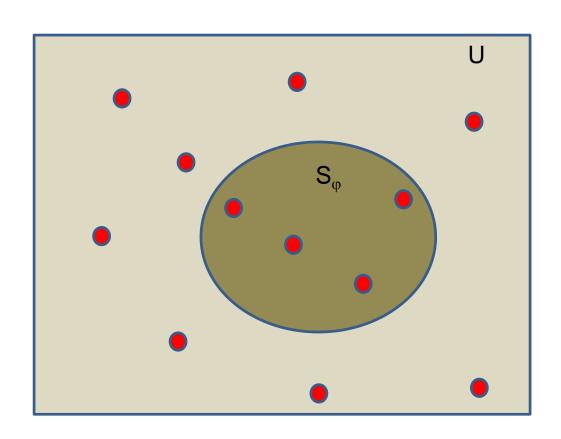
where m = #cubes

Previous Work

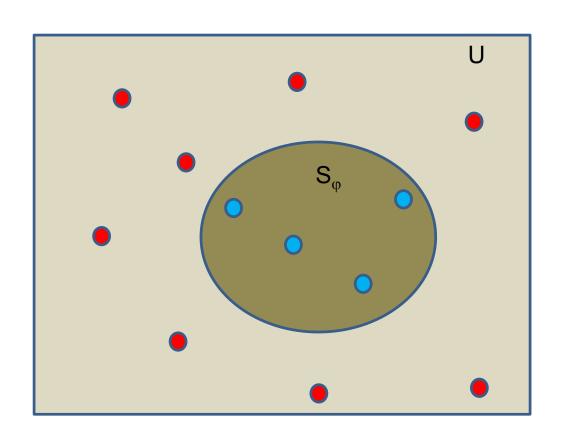
- 1. Monte Carlo Sampling for Approximate DNF-Counting
 - _{1.} [Karp, Luby '83]
 - 2. [Karp, Luby, Madras '89]
 - 3. [Dagum, Karp, Luby, Ross '00]

- 2. Hashing-Based Algorithms for Approximate DNF-Counting
 - Originated with [Sipser, '83], [Bellare et al. '98], [Gomes et al. '06]

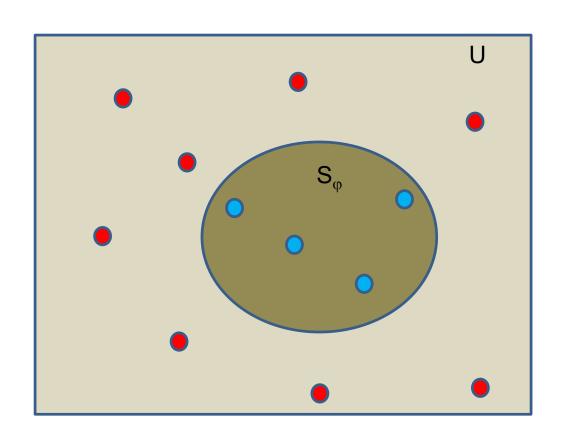
2. **DNF-Counting FPRAS:** [Chakraborty et al., '16]



- Randomly sample from U
- "Throwing darts"



- Randomly sample from U
- "Throwing darts"
- Count darts on target

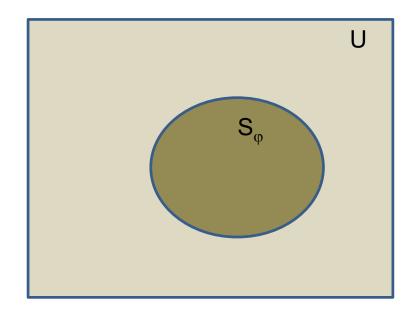


- Randomly sample from U
- "Throwing darts"
- Count darts on target

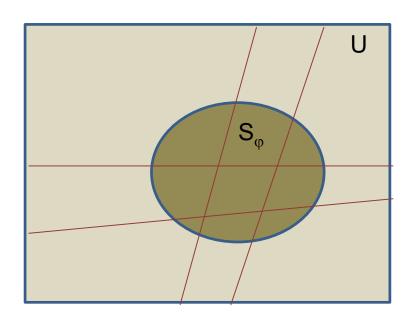
•
$$O(m \cdot n \cdot log(\frac{1}{\delta}) \cdot \frac{1}{\epsilon^2})$$
 [Karp et al., '89]

where
$$m = \#cubes$$
 $n = \#vars$

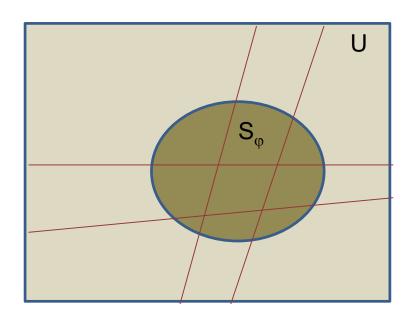
"Cutting slices of a pie"



Partition universe into 'cells'

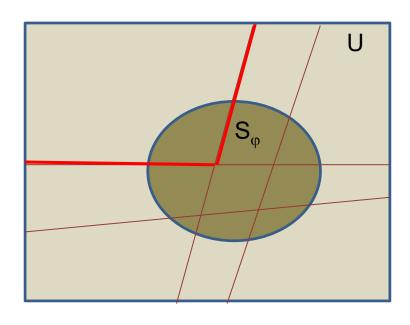


Partition universe into 'cells'

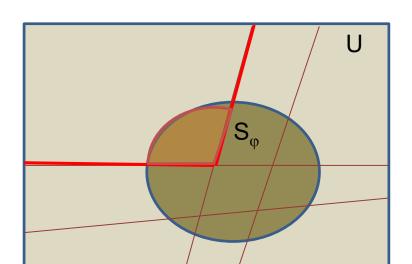


• Ensure 'roughly' equal solutions to φ in each cell

Partition universe into 'cells'



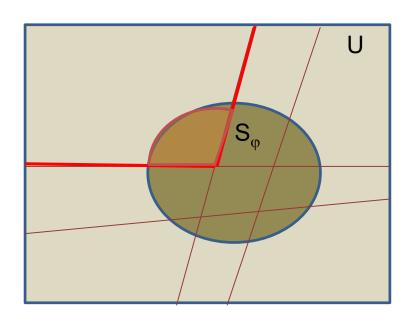
- Ensure 'roughly' equal solutions to φ in each cell
- Pick a cell at random



Partition universe into 'cells'

- Ensure 'roughly' equal solutions to φ in each cell
- Pick a cell at random

Count solutions only in the picked cell

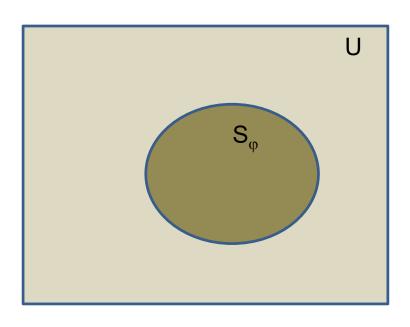


Partition universe into 'cells'

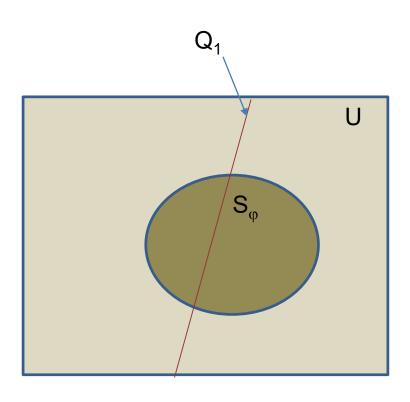
- Ensure 'roughly' equal solutions to φ in each cell
- Pick a cell at random

Count solutions only in the picked cell

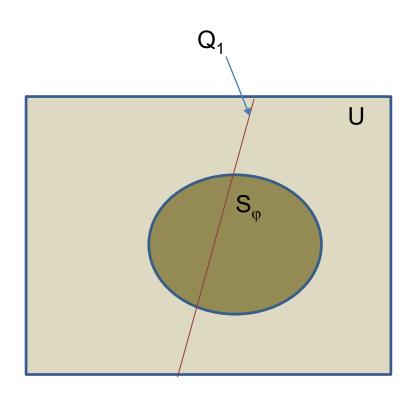
Estimate count as #(solutions to φ in cell) x #cells



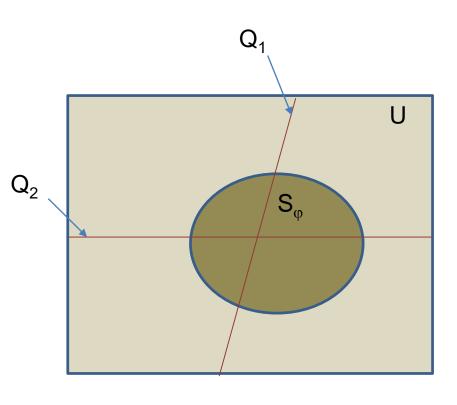
- Partition universe into 'cells'
 - Hash function: Conjunction of Hash Constraints
 - Hash Constraint: Boolean formula randomly chosen from special set (Hash family)



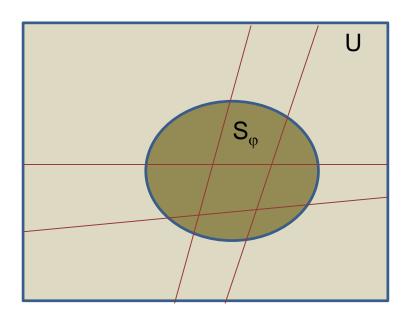
- Partition universe into 'cells'
 - Hash function: Conjunction of Hash Constraints
 - Hash Constraint: Boolean formula randomly chosen from special set (Hash family)



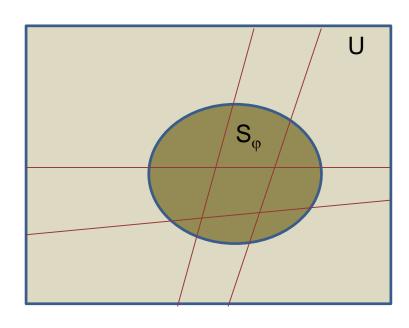
- Partition universe into 'cells'
 - Hash function: Conjunction of Hash Constraints
 - Hash Constraint: Boolean formula randomly chosen from special set (Hash family)
 - Q₁ partitions U into 2 'cells'
 - $Q_1 = 0$
 - $Q_1 = 1$



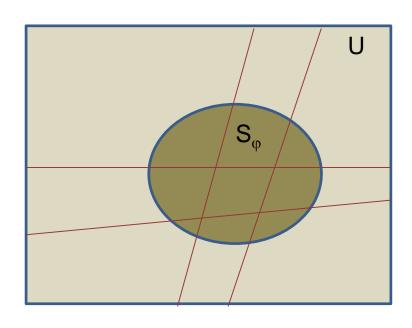
- Partition universe into 'cells'
 - Hash function: Conjunction of Hash Constraints
 - Hash Constraint: Boolean formula randomly chosen from special set (Hash family)
 - Q₁, Q₂ partitions U into 4 'cells'
 - $Q_1, Q_2 \in \{00, 01, 10, 11\}$



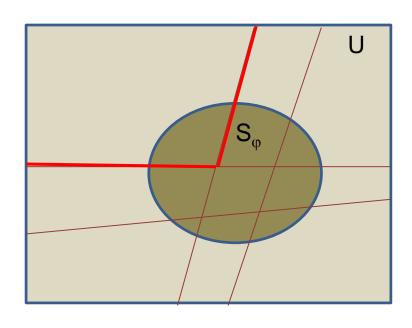
- Partition universe into 'cells'
 - Hash function: Conjunction of Hash Constraints
 - Hash Constraint: Boolean formula randomly chosen from special set (Hash family)
 - Q₁, Q₂, Q₃...., Q_I partitions U into 2^L 'cells'



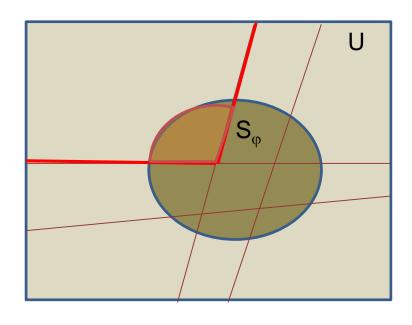
- Partition universe into 'cells'
 - Hash function: Conjunction of Hash Constraints
 - Hash Constraint: Boolean formula randomly chosen from special set (Hash family)
 - Q₁, Q₂, Q₃...., Q_L partitions U into 2^L 'cells'
- Ensure 'roughly' equal solutions to φ in each cell



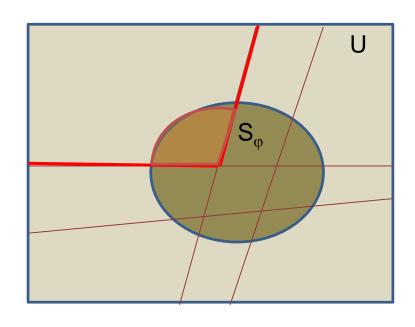
- Partition universe into 'cells'
 - Hash function: Conjunction of Hash Constraints
 - Hash Constraint: Boolean formula randomly chosen from special set (Hash family)
 - Q₁, Q₂, Q₃...., Q_L partitions U into 2^L 'cells'
- Ensure 'roughly' equal solutions to φ in each cell
 - Use 2-universal Hash Families



- Partition universe into 'cells'
 - Hash function: Conjunction of Hash Constraints
 - Hash Constraint: Boolean formula randomly chosen from special set (Hash family)
 - Q₁, Q₂, Q₃...., Q_I partitions U into 2^L 'cells'
- Ensure 'roughly' equal solutions to φ in each cell
 - Use 2-universal Hash Families
- Pick cell at random
 - $Q_1Q_2Q_3....Q_L = 0100...1$



- Partition universe into 'cells'
 - Hash function: Conjunction of Hash Constraints
 - Hash Constraint: Boolean formula randomly chosen from special set (Hash family)
 - Q₁, Q₂, Q₃...., Q_L partitions U into 2^L 'cells'
- Ensure 'roughly' equal solutions to φ in each cell
 - Use 2-universal Hash Families
- Pick cell at random
 - $Q_1Q_2Q_3....Q_1 = 0100...1$
- Count solutions in the picked cell
 - $\varphi' = \varphi \wedge Q$
 - $Q = (Q_1 \Leftrightarrow 0) \land (Q_2 \Leftrightarrow 1) \land (Q_3 \Leftrightarrow 0) ... (Q_L \Leftrightarrow 1)$
 - Calculate $|S_{\phi}|$



- Partition universe into 'cells'
 - Hash function: Conjunction of Hash Constraints
 - Hash Constraint: Boolean formula randomly chosen from special set (Hash family)
 - Q₁, Q₂, Q₃...., Q_L partitions U into 2^L 'cells'
- Ensure 'roughly' equal solutions to φ in each cell
 - Use 2-universal Hash Families
- Pick cell at random
 - $Q_1Q_2Q_3....Q_1 = 0100...1$
- Count solutions in the picked cell
 - $\phi' = \phi \wedge Q$
 - $Q = (Q_1 \Leftrightarrow 0) \land (Q_2 \Leftrightarrow 1) \land (Q_3 \Leftrightarrow 0) ... (Q_L \Leftrightarrow 1)$
 - Calculate |S_o,
- Estimate count as #(solutions to φ in cell) x #cells
 - |S₀| ≈ |S₀| x (# cells)

Comparison of Approaches

Monte Carlo Sampling

- "Dart Throwing"
- DNF-Counting
 - Complexity: $O(m \cdot n \cdot log(\frac{1}{\delta}) \cdot \frac{1}{\epsilon^2})$
 - [Karp et al., '89]

Hashing Based

- "Pie Slicing"
- DNF-Counting
 - Complexity: $O(m \cdot n^3 \cdot log(\frac{1}{\delta}) \cdot \frac{1}{\epsilon^2})$
 - 'ApproxMC' [Chakraborty et al., '16]

where m = #cubes

n = #vars

Comparison of Approaches

Monte Carlo Sampling

- "Dart Throwing"
- DNF-Counting
 - Complexity: $O(m \cdot n \cdot log(\frac{1}{\delta}) \cdot \frac{1}{\epsilon^2})$
 - [Karp et al., '89]
- CNF-Counting
 - Does not scale well

Hashing Based

- "Pie Slicing"
- DNF-Counting
 - Complexity: $O(m \cdot n^3 \cdot log(\frac{1}{\delta}) \cdot \frac{1}{\epsilon^2})$
 - 'ApproxMC' [Chakraborty et al., '16]
- CNF-Counting
 - Very successful in practice

where m = #cubes

Motivating Questions

- Power of Hashing?
- Can ApproxMC be made competitive with state-of-the-art?

Contributions

Better Hashing techniques for Approximate DNF-Counting

Row Echelon Hash Family

Symbolic Hashing

Stochastic Cell-Counting

XOR Family of Hash Functions

Boolean Formulas with only XOR

2-Universal

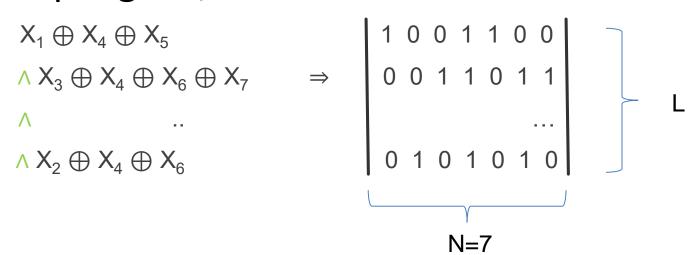
- Sampling procedure:
 - Pick each variable with probability 0.5
 - XOR picked variables

XOR Family: Hash Matrix

- Sample each constraint at random (n=7)
 - $\cdot Q_1 = X_1 \oplus X_4 \oplus X_5$
 - $\cdot Q_2 = X_3 \oplus X_4 \oplus X_6 \oplus X_7$
 - •
 - $\cdot Q_1 = X_2 \oplus X_4 \oplus X_6$

XOR Family: Hash Matrix

- Sample each constraint at random (n=7)
 - $\cdot Q_1 = X_1 \oplus X_4 \oplus X_5$
 - $Q_2 = X_3 \oplus X_4 \oplus X_6 \oplus X_7$
 - •
 - $\cdot Q_L = X_2 \oplus X_4 \oplus X_6$
- Equivalent to sampling a 0/1 matrix of dimension L x 7



XOR Family: Counting using XORs

1. Sample a hash matrix

- $\cdot Q_1 = X_1 \oplus X_4 \oplus X_5$
- $\cdot Q_2 = X_3 \oplus X_4 \oplus X_6 \oplus X_7$
- •
- $\cdot Q_L = X_2 \oplus X_4 \oplus X_6$
- 2. Pick a cell (L bits) at random
 - · 10...1
- 3. Count solutions to φ in cell
 - $\phi' = \phi \wedge Q$ where $Q = (Q_1 \Leftrightarrow 1) \wedge (Q_2 \Leftrightarrow 0) \wedge ... (Q_L \Leftrightarrow 1)$
 - Need to find $|S_{\phi'}|$

XOR Family: Counting using XORs

1. Sample a hash matrix

- $\cdot Q_1 = X_1 \oplus X_4 \oplus X_5$
- $\cdot Q_2 = X_3 \oplus X_4 \oplus X_6 \oplus X_7$

•

$$\cdot Q_L = X_2 \oplus X_4 \oplus X_6$$

- 2. Pick a cell (L bits) at random
 - · 10...1
- 3. Count solutions to φ in cell
 - $\phi' = \phi \wedge Q$ where $Q = (Q_1 \Leftrightarrow 1) \wedge (Q_2 \Leftrightarrow 0) \wedge ... (Q_L \Leftrightarrow 1)$
 - Need to find $|S_{\phi'}|$: Enumerate solutions to Q and check if satisfy ϕ

XOR Family: Enumerating Solutions

- Q is a system of linear equations (mod 2)
 - Simplify using Gaussian Elimination!

XOR Hash: Gaussian Elimination

$$\bullet \quad \begin{bmatrix} 1 & 0 & 1 & \dots & 1 \\ 1 & 1 & 0 & \dots & 1 \\ 0 & 1 & 0 & \dots & 1 \\ 0 & 1 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} X_1 \\ X_2 \\ \dots \\ X_{n'} \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 1 \\ \dots \\ 1 \end{bmatrix} \quad \xrightarrow{Gaussian} \quad \begin{bmatrix} 1 & 0 & 0 & 0 & \dots & 1 \\ 0 & 1 & 0 & 1 & \dots & 1 \\ 0 & 0 & 1 & 1 & \dots & 1 \\ 0 & 0 & 0 & 0 & \dots & 0 \\ \dots & \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} X_1 \\ X_2 \\ \dots \\ X_{n'} \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \\ 0 \\ \dots \\ 1 \end{bmatrix}$$

$$\text{Row Echelon Form}$$

- Row Echelon Form:
 - First block is the identity matrix
 - Zero rows after non-zero rows

XOR Hash: Gaussian Elimination

$$\cdot \begin{bmatrix} 1 & 0 & 1 & \dots & 1 \\ 1 & 1 & 0 & \dots & 1 \\ 0 & 1 & 0 & \dots & 1 \\ 0 & 1 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} X_1 \\ X_2 \\ \vdots \\ X_{n'} \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 1 \\ \vdots \\ 1 \end{bmatrix}$$

$$\xrightarrow{Gaussian} \begin{bmatrix} 1 & 0 & 0 & 0 & \dots & 1 \\ 0 & 1 & 0 & 1 & \dots & 1 \\ 0 & 0 & 1 & 1 & \dots & 1 \\ 0 & 0 & 0 & 0 & \dots & 0 \\ \vdots \\ 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} X_1 \\ X_2 \\ \vdots \\ X_{n'} \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \\ 0 \\ \vdots \\ 1 \end{bmatrix}$$

$$\xrightarrow{Row Echelon Form}$$

- Row Echelon Form:
 - First block is the identity matrix
 - Zero rows after non-zero rows
- Drawback: Gaussian Elimination is O(n³)
 - ApproxMC Complexity $O(m \cdot n^3 \cdot log(\frac{1}{\delta}) \cdot \frac{1}{\epsilon^2})$

$$\begin{bmatrix} 1 & 0 & 0 \dots & 0 & 1 & 1 \\ 0 & 1 & 0 \dots & 0 & 1 & 1 \\ 0 & 0 & 1 \dots & 0 & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 \dots & 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} X_1 \\ X_2 \\ \vdots \\ X_n \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \\ 0 \\ \vdots \\ 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & 0 \dots & 0 & \mathbf{1} & \mathbf{1} \\ 0 & 1 & 0 \dots & 0 & \mathbf{1} & \mathbf{1} \\ 0 & 0 & 1 \dots & 0 & \mathbf{0} & \mathbf{0} \end{bmatrix} \begin{bmatrix} X_1 \\ X_2 \\ \vdots \\ X_n \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \\ 0 \\ \vdots \\ X_n \end{bmatrix}$$

Sample a hash matrix in Row-Echelon form directly!

• Only sample $L \times (n - L)$ non-identity part

$$\begin{bmatrix} 1 & 0 & 0 \dots & 0 & \mathbf{1} & \mathbf{1} \\ 0 & 1 & 0 \dots & 0 & \mathbf{1} & \mathbf{1} \\ 0 & 0 & 1 \dots & 0 & \mathbf{0} & \mathbf{0} \end{bmatrix} \begin{bmatrix} X_1 \\ X_2 \\ \vdots \\ X_n \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \\ 0 \\ \vdots \\ X_n \end{bmatrix}$$

- Only sample $L \times (n L)$ non-identity part
- Eliminates expensive Gaussian Elimination step

$$\begin{bmatrix} 1 & 0 & 0 \dots & 0 & \mathbf{1} & \mathbf{1} \\ 0 & 1 & 0 \dots & 0 & \mathbf{1} & \mathbf{1} \\ 0 & 0 & 1 \dots & 0 & \mathbf{0} & \mathbf{0} \end{bmatrix} \begin{bmatrix} X_1 \\ X_2 \\ \vdots \\ X_n \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \\ 0 \\ \vdots \\ 1 \end{bmatrix}$$

- Only sample $L \times (n L)$ non-identity part
- Eliminates expensive Gaussian Elimination step
- Is it 2-Universal?

$$\begin{bmatrix}
1 & 0 & 0 \dots & 0 & \mathbf{1} & \mathbf{1} \\
0 & 1 & 0 \dots & 0 & \mathbf{1} & \mathbf{1} \\
0 & 0 & 1 \dots & 0 & \mathbf{0} & \mathbf{0} \\
\vdots & \vdots & \ddots & \vdots & \ddots & \vdots \\
0 & 0 & 0 \dots & 1 & \mathbf{1} & \mathbf{1}
\end{bmatrix}
\begin{bmatrix}
X_1 \\ X_2 \\ \vdots \\ X_n
\end{bmatrix} =
\begin{bmatrix}
0 \\ 1 \\ 0 \\ \vdots \\ 1
\end{bmatrix}$$

- Only sample $L \times (n L)$ non-identity part
- Eliminates expensive Gaussian Elimination step
- Is it 2-Universal? Yes!
- Theorem: Row-Echelon Family is 2-Universal

Hash Family Comparison

XOR Hash Family

- O(n²) space
- O(n³) time to generate (Gaussian Elim.)
- $O(n^2)$ time to enumerate one solution

Row Echelon Hash Family

- O(n²) space
- O(n²) time (Sampling the matrix)
- O(n) time to enumerate one solution

where m = #cubes

n = #vars

Hash Family Comparison

XOR Hash Family

- O(n²) space
- O(n³) time to generate (Gaussian Elim.)
- O(n²) time to enumerate one solution
- Complexity of **ApproxMC** (XOR hash) [Chakraborty et al, '16]:

$$O(m \cdot n^3 \cdot log(\frac{1}{\delta}) \cdot \frac{1}{\varepsilon^2})$$

where m = #cubes

Row Echelon Hash Family

- O(n²) space
- O(n²) time (Sampling the matrix)
- O(n) time to enumerate one solution
- Complexity of ApproxMC with RE hash:

$$O(m \cdot n^2 \cdot log(\frac{1}{\delta}) \cdot \frac{1}{\varepsilon^2})$$

n = #vars

Hash Family Comparison

XOR Hash Family

- O(n²) space
- O(n³) time to generate (Gaussian Elim.)
- $O(n^2)$ time to enumerate one solution
- Complexity of ApproxMC (XOR hash)
 [Chakraborty et al, '16]:

$$O(m \cdot n^3 \cdot log(\frac{1}{\delta}) \cdot \frac{1}{\varepsilon^2})$$

Row Echelon Hash Family

- O(n²) space
- O(n²) time (Sampling the matrix)
- O(n) time to enumerate one solution
- Complexity of ApproxMC with RE hash:

$$O(m \cdot n^2 \cdot log(\frac{1}{\delta}) \cdot \frac{1}{\varepsilon^2})$$

Karp et al. Algorithm: $O(m \cdot n \cdot log(\frac{1}{\delta}) \cdot \frac{1}{\epsilon^2})$

Symbolic Hashing and Stochastic Cell-Counting

Room for Improvement

- Time to sample a matrix from RE family: $L \times (n L)$
 - If $L \approx n$ then sample time = O(n)

Room for Improvement

- Time to sample a matrix from RE family: $L \times (n L)$
 - If $L \approx n$ then sample time = O(n)

• L \approx n when $|S_{\omega}| \approx |U|$

Room for Improvement

- Time to sample a matrix from RE family: $L \times (n L)$
 - If $L \approx n$ then sample time = O(n)

• L \approx n when $|S_{\omega}| \approx |U|$

- But $|S_{\omega}|$ can be much smaller than |U|
 - Exponentially smaller in worst case

Symbolic Hashing: Outline

- 1. Transform U to U' [Karp et al., '83]
 - $|S_{\omega}|$ is polynomially smaller than |U'| in worst case

2. Hash over the transformed universe U' (our contribution)

Symbolic Hashing: Space Transform

1. Transform U to U' [Karp et al., '83]

- $U = \{0,1\}^n$
 - Set of all assignments σ
 - Includes satisfying and unsatisfying assignments to φ

Symbolic Hashing: Space Transform

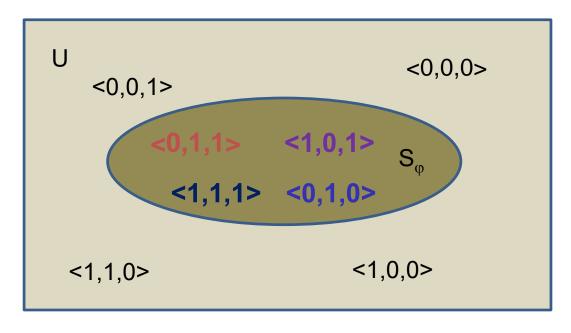
1. Transform U to U' [Karp et al., '83]

• U' =
$$\{ (\sigma, C_i) \mid \sigma \models C_i \}$$

- Multiset of satisfying assignments (Recall: $\sigma \models C_i \Rightarrow \sigma \models \phi$)
- Each σ occurs at most m = #cubes times
- $|U'| \leq m. |S_{\varphi}|$

Symbolic Hashing: Space Transform Example

$$\varphi = (\neg X_1 \land X_2) \lor (X_2 \land X_3) \lor (X_1 \land X_3)$$



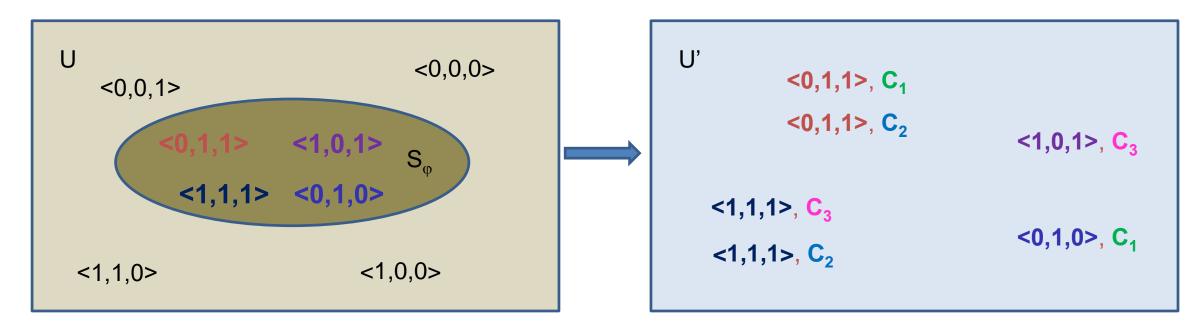
$$|U| = 8$$

 $|S_{o}| = 4$

$$|U| \leqslant 2.|S_{\varphi}|$$

Symbolic Hashing: Space Transform Example

$$\varphi = (\neg X_1 \land X_2) \lor (X_2 \land X_3) \lor (X_1 \land X_3)$$



$$|U| = 8$$
$$|S_{\varphi}| = 4$$

$$|U| \leqslant 2.|S_{\phi}|$$

$$|U'| = 6$$

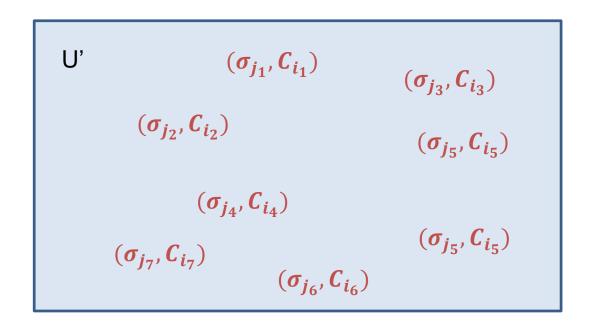
 $|S_{\phi}| = 4$

$$|U'| \leqslant 1.5 |S_{\varphi}|$$

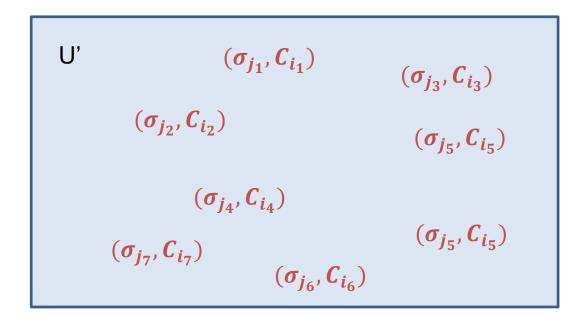
Symbolic Hashing: Hashing over U'

- 2. Partition $U' = \{ (\sigma, C_i) \mid \sigma \models C_i \}$
 - Use hash constraints with n + log(m) variables
 - X₁ ... X_n
 - Y₁ ... Y_{log(m)} auxiliary variables
 - "Bit-Blasting"
 - First n bits select σ
 - Last log(m) bits select C_i
 - Binary representation of the index i

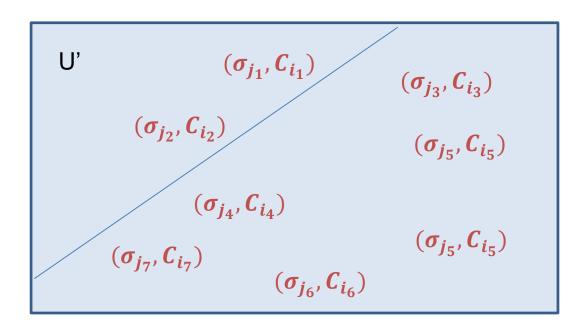
where m = #cubes n = #vars



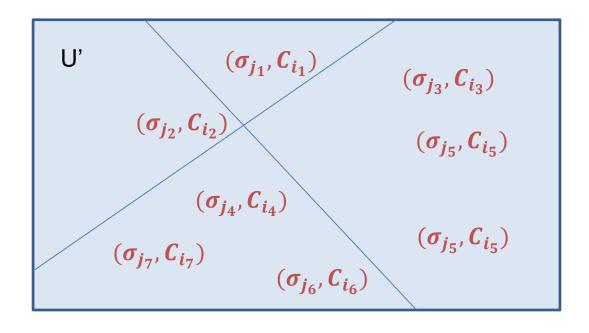
1) Add constraints ..



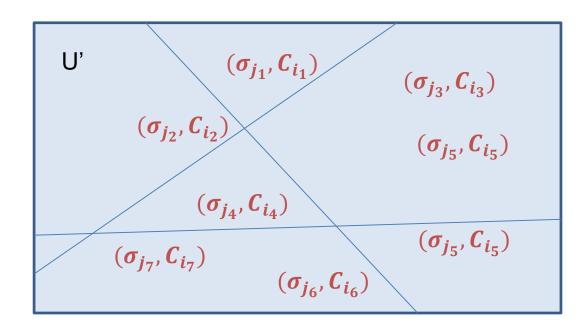
1) Add constraints: Q₁

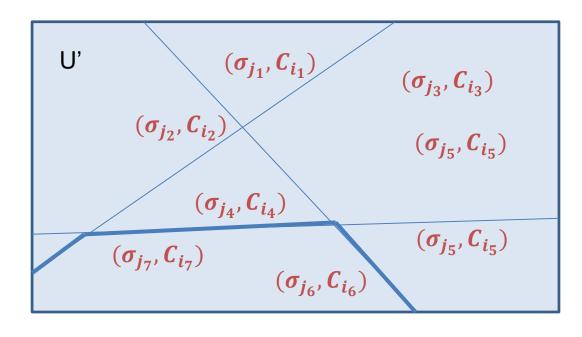


1) Add constraints: Q₁, Q₂



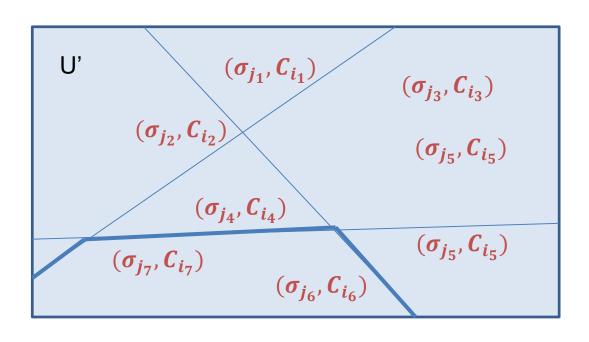
1) Add constraints: Q₁, Q₂, ..., Q_L





1) Add constraints: Q₁, Q₂, ..., Q_L

2) Pick a cell at random



1) Add constraints: Q₁, Q₂, ..., Q_L

2) Pick a cell at random

- 3) Estimate $|S_{\phi}| \approx |S_{\phi'}| \times (\# \text{ cells})$
 - Details in paper

Symbolic Hashing: Significance

• Theorem: The estimate $|S_{\phi'}| \times 2^L$ in U' provides the required tolerance ϵ and confidence δ

- [Chakraborty et al. '13, '16] imposed tight coupling between input formula and hash function
 - Removed this restriction
 - U' is never explicitly constructed

Adapted ideas from Monte Carlo to Hashing

Stochastic Cell Counting

- Idea: Use Monte Carlo within cell!
 - Sample assignments uniformly from cell
 - No need to calculate $|S_{\omega'}|$ exactly
 - Probabilistic estimate $Y \approx |S_{\sigma'}|$ adapting [Karp et al., '89]

• **Theorem:** The estimate $Y \times 2^L$ in U' provides the required tolerance ϵ and confidence δ

Complexity

DNF-ApproxMC

- Row Echelon Hash Functions
- Symbolic Hashing
- Stochastic Cell-Counting

• Theorem: DNF-ApproxMC runs in time $\widetilde{O}(m \cdot n \cdot log(\frac{1}{\delta}) \cdot \frac{1}{\epsilon^2})$

Summary

- Problem: Approximate DNF-Counting
- Previous work: Poor time complexity
- Our contributions: Improvements to the hashing framework
 - · Row Echelon Hash Family, Symbolic Hashing, Stochastic Cell Counting
- Result: New complexity $\widetilde{O}(m \cdot n \cdot log(\frac{1}{\delta}) \cdot \frac{1}{\epsilon^2})$
- **Significance:** General technique of hashing is as powerful as specialized technique of Monte Carlo for DNF-Counting!

Future Work

Extend techniques to Weighted DNF-Counting

- Utilize techniques to improve CNF-Counting
 - Techniques do not depend on encoding of formula
 - Sparsity of Row Echelon Hash functions

Main Results

Theorem 1: Row-Echelon Hash Family is 2-Universal

- Theorem 2: The estimate obtained from DNF-ApproxMC provides the required tolerance ϵ and confidence δ
- Theorem 3: DNF-ApproxMC runs in time $\widetilde{O}(m \cdot n \cdot log(\frac{1}{\delta}) \cdot \frac{1}{\epsilon^2})$

Thank you

• Questions?