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SAT Sampling and Counting

▪ Given a propositional logic formula F in CNF

▪ Generate satisfying assignments uniformly at random 
▪ Uniform over the space of satisfying assignments

▪ Count the number of satisfying assignments
umber of satisfying assignments
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SAT Sampling
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▪ F = (a V b)

▪ RF: {(0,1), (1,0), (1,1)}

▪ G: A uniform generator

▪ Pr [G(F) = (0,1) ] = Pr [G (F) = (1,1)] = …. = 1/3



SAT Counting
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▪ F = (a V b)

▪ RF: {(0,1), (1,0), (1,1)}

▪ #F: 3

▪ #P: The class of counting problems for decision 

problems in NP

▪ #P-complete (Valiant 1979)
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SAT Sampling and Counting: Prior Work

• Prior work (before 2013) either failed to scale or 
provided very weak guarantees

• (Since 2013) Recent Hashing-based approach to 
approximate variants of sampling and counting  
– Strong theoretical guarantees

– Scales to large instances

[Chakraborty et al 13a,13b,14,15, Chakraborty et al. 14, 
Ermon et al. 13a,14,15, Belle 15, Chistikov 15 and 
others]
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Core Idea
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Cells should be roughly equal in size and small 
enough to enumerate completely

Partitioning into cells
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Pick a random cell

Uniform Sampling

Pick a random solution from this cell 



Counting through Partitioning 
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Pick a random cell

Total # of solutions= #solutions in the cell
* total # of cells



How to Partition?

How to partition into roughly equal 
small cells of solutions without 
knowing the distribution of 
solutions? 

Universal Hashing
[Carter-Wegman 1979] 
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XOR-based Hashing
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XOR-Based Hashing

• The cell:  F∧ {m  XOR constraints}
• CryptoMiniSAT: Efficient for CNF+XOR

• Avg Length : n/2

• Smaller the XORs, better the performance

How to shorten XOR clauses? 
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Independent Support

• Set of variables such that assignments to 
these uniquely determine assignments to rest 
of variables for formula to be true

• If                   agree on I then 

• c ⟷ (a V b) ; Independent Support (I): {a, b}

• Hash only on the independent variables

[Chakraborty et al. DAC 2014]
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Independent Support

• Hash only on the Independent Support

• Average size of XOR: n/2 to I/2

• Ad-hoc (and often wrong) estimation of 
Independent support

• No procedure to determine Independent 
Support
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Contributions

• MIS: The first algorithmic procedure to 
determine minimal Independent Support

• Scales to formulas with tens of thousands of 
variables

• Speeds up the state of the art sampling and 
counting techniques by 1-2 orders of 
magnitude
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Key Idea
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Key Idea
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Key Idea
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Impact on Sampling and Counting 
Techniques
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Experimental Results

• Prototype implementation (MIS)

– Employs Muser2 for MUS computation

• Experimented with over 200+ benchmarks to 
study impact on sampling and counting tools

– UniGen2: Almost uniform sampler

– ApproxMC: Approximate model counter
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Size of Minimal Independent Supports
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Performance Impact on Approximate 
Model Counting
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Performance Impact on Uniform 
Sampling
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Conclusion

• Sampling and counting are fundamental 
problems with wide variety of applications

• Independent support is key to scalability of 
the recent techniques

• MIS: First algorithmic procedure to determine 
independent support

• Provides 1-2 orders of performance 
improvement in the state-of-art sampler and 
counters
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