
WAPS: Weighted and Projected Sampling

Rahul Gupta1, Shubham Sharma1,
Subhajit Roy1, and Kuldeep S. Meel2

1Indian Institute of Technology Kanpur, India
2National University of Singapore, Singapore

TACAS 2019

The tool is available online https://github.com/meelgroup/WAPS

1 / 26

https://github.com/meelgroup/WAPS

Hardware Validation

c = f(a,b)

a b

c

64 bit 64 bit

64 bit

Design is simulated with test vector
(values of a and b)

Results from simulation compared to
intended results

Challenge: How do we generate test
vectors?

– 2128 combinations for a toy circuit

Use constraints to represent interesting
verification scenarios

2 / 26

Constrained Simulation

c = f(a,b)

a b

c

64 bit 64 bit

64 bit

Constraints:
Designers:

– a+64 11 ∗32 b = 12
– a <64 (b >> 4)

Past Experience:

– 40 <64 34 +64 a <64 5050
– 120 <64 b <64 230

Users:

– 232 ∗32 a+64 b! = 1100
– 1020 <64 (b/642) +64 a <64 2200

Weight distribution: W (·) on solutions of
constraints to achieve coverage goals

Test vectors: sampled solutions of
constraints conditioned on W (·)

3 / 26

Weighted and Projected Sampling

Given:

CNF formula F over a set of variables X
Set of projecting variables P ⊆ X
Weight function W (·) over literals

– The weight of assignment is the product of weights of its literals

Weighted and Projected Sampler:

∀y ∈ RF↓P ,Pr [y is output] =
W (y)

W (RF↓P)

4 / 26

Applications of Weighted and Projected Sampling

5 / 26

Wish List

Theoretical guarantee that samples projected over a sampling set
satisfy a certain weight distribution.

Scalability

Anytime Generation:

– Testing typically involves multiple iterations of sampling and
verification.

6 / 26

Prior Work

Strong guarantees but poor scalability

Hashing based techniques - WeightGen (Chakraborty et al. 2014)

BDD based techniques (Yuan et al. 1999, Yuan et al. 2004, Kukula
and Shiple 2000)

Weak guarantees but impressive scalability

MCMC, Metropolis-Hasting (Jerrum et al. 1996, Mardras et al. ’02)

How to bridge this gap between theory and practice?

7 / 26

Close Cousins: Counting and Sampling

Approximate counting and almost-uniform sampling are
inter-reducible (Jerrum et al. 1986)

Can we design exact samplers that require only one call to exact
counter?

All exact counting techniques generate d-DNNF (Huang and
Darwiche 2008)

Uniform sampling can be performed by making constant number of
passes over compiled d-DNNF (Sharma et al. 2018)

Can knowledge compilation technique be used to perform weighted
and projected sampling?

8 / 26

d-DNNF

The Deterministic Decomposable Negation Normal Form (d-DNNF) is a
strict subset of NNF that further imposes that the representation is:

Deterministic: the operands of ∨ in all well-formed Boolean formula
in the NNF are mutually inconsistent.

Decomposable: the operands of ∧ in all well-formed Boolean formula
in the NNF are expressed in a mutually disjoint set of variables.

9 / 26

An example of d-DNNF

OR

AND AND

1

-2

-1 OR

ANDAND

2-334

10 / 26

The power of d-DNNF

Counting is linear time in the size of d-DNNF.

– OR Node: Sum the solutions of children
– AND Node: Multiply the solutions of children

11 / 26

WAPS

12 / 26

Projected Compilation

F = (x6 ∨ x5 ∨ ¬x1 ∨ x3) ∧ (x3 ∨ x6 ∨ ¬x5 ∨ ¬x1) ∧ (¬x2 ∨ x4 ∨ ¬x1) ∧
(x1 ∨ x2) ∧ (x3 ∨ ¬x6 ∨ ¬x1) ∧ (¬x3 ∨ ¬x5 ∨ x6)

P = {x1, x2, x3}

13 / 26

Weight Annotation

OR

AND AND

w1 w2

w1 + w2

AND

OR OR

w1 w2

w1 * w2 * w3 * ... * wn

literal ...

W(literal) wn

...

14 / 26

Getting one sample

Since, solutions are disjoint at different children of an OR node, to
draw a sample, we can simply perform a Bernoulli experiment with
probabilities proportional to the weights of children at OR node.

At AND node, we simply stitch the samples from its children.

x1 x2 ¬x1 x2

OR

AND AND

0.7

1 1 1 1

0.50.30.5

To draw a sample

0.15 0.35

DAG with annotated weights

x1 x2 ¬x1 x2

OR

AND AND

0.7

1 1 1 1

0.50.30.5

To draw a sample

0.15 0.35

Bernoulli(0.7) = 1

Deciding the path by bernoulli trial

x1 x2 ¬x1 x2

OR

AND AND

0.7

1 1 1 1

0.50.30.5

To draw a sample

0.15 0.35

Stitching sample from all children of AND node

Sample:

¬ ,x1 x2

15 / 26

Getting multiple samples

To draw multiple samples

Use Binomial Distribution at the OR nodes to find number of samples
to be drawn from each child

Randomly shuffle the samples before stitching them at the AND node.

16 / 26

Theoretical Guarantees

∀y ∈ RF↓P ,Pr [y is output] =
W (y)

W (RF↓P)

17 / 26

Experimental Evaluation

773 benchmarks arising from ISCAS89 circuits, DQMR networks,
bit-blasted versions of SMT-LIB (SMT)

Compared with WeightGen: state-of-the-art weighted and projected
sampler

Objectives:

Runtime performance
Anytime Generation
Distribution comparison
Effect of Weight Distribution

18 / 26

Runtime Performance-I

0 100 200 300 400 500 600
Instances

0

250

500

750

1000

1250

1500

1750
CP

U
tim

e
(s

)
WAPS WeightGen

WeightGen solved 24 benchmarks

WAPS solved 588 benchmarks
19 / 26

Runtime Performance-II

Benchmark Vars Clauses |P| WeightGen
WAPS WeightGen

Compile A+S Total WAPS

s526 15 7 452 1303 22 652.48 91.66 31.15 122.81 5.31

s526a 3 2 366 944 24 490.34 15.37 1.96 17.33 28.29

LoginService 11511 41411 36 1203.93 15.02 0.75 15.77 76.34

blockmap 5 2 1738 3452 1738 1140.87 0.04 5.30 5.34 213.65

s526 3 2 365 943 24 417.24 0.06 0.67 0.73 571.56

or-50-5-9-UC-40 100 250 100 743.1 0.01 0.41 0.42 1769.29

or-100-5-4-UC 200 500 200 1795.52 0.01 0.74 0.75 2426.38

or-50-5-10-UC 100 250 100 1292.67 0.01 0.36 0.37 3590.75

blasted case35 400 1414 46 TO 0.57 1.46 2.03 -

or-100-20-4-UC 200 500 200 TO 0.19 2.48 2.67 -

Table: Run time (in seconds) for 1000 samples

WAPS outperformed WeightGen with a geometric speedup of 296×

20 / 26

Anytime Generation

Benchmark Vars Clauses |P| WAPS
Speedup

1000 10,000

case110 287 1263 287 1.14 9.28 1.26

or-70-10-10-UC-20 140 350 140 2.75 9.02 6.56

s526 7 4 383 1019 24 60.38 143.16 13.20

or-60-5-2-UC-10 120 300 120 12.10 20.35 16.50

s35932 15 7 17918 44709 1763 69.01 106.65 20.73

case121 291 975 48 35.85 51.41 20.73

s641 15 7 576 1399 54 729.38 916.83 35.01

squaring7 1628 5837 72 321.95 365.13 67.10

LoginService 11511 41411 36 15.89 18.12 64.13

ProjectService 3175 11019 55 184.51 195.25 154.61

Table: Runtimes (in sec.) of WAPS for incremental sampling

WAPS achieves a geometric speedup of 3.69×

21 / 26

Distribution Comparison

200 300 400 500 600 700
Solution Count

0

20

40

60

80

100

120
Oc

cu
rre

nc
es

WeightGen WAPS IS

22 / 26

Effect of Weight Distribution

0 25 50 75 100 125 150 175 200
Instances

0

250

500

750

1000

1250

1500

1750

CP
U

tim
e

(s
)

UniGen2 WeightGen

0 100 200 300 400 500 600
Instances

0

250

500

750

1000

1250

1500

1750

CP
U

tim
e

(s
)

WAPS KUS

The performance of hashing-based techniques is limited in its ability
to handle literal-weighted sampling.

The performance of knowledge compilation based sampling technique
is oblivious to the weight distribution.

23 / 26

Conclusion

Weighted and projected sampling is a fundamental problem with a
wide variety of applications

Deep connection between sampling and counting offers opportunities
for design of sampling algorithms

The trace of exact counting algorithms generates compiled knowledge
forms. (d-DNNF)

Knowledge representations can be used to generate samples

Outperforms existing state of the art techniques

Where do we go from here? Knowledge compilation for sampling?

24 / 26

Conclusion

Exact counting is #P-complete

Exact counting can be done in linear time in the size of d-DNNF

Relaxations of d-DNNF that allow sampling in polynomial time but
not exact counting?

25 / 26

Conclusion

The tool is available online https://github.com/meelgroup/WAPS

26 / 26

https://github.com/meelgroup/WAPS

	Hardware Validation
	Sampling
	Prior Work
	WAPS
	Theoretical Guarantees
	Experimental Evaluation

