
On Parallel Scalable Uniform

Generation of SAT Witnesses

Apr 15, 2015 TACAS 2015 1

Supratik Chakraborty1, Daniel J. Fremont2, Kuldeep S. Meel3,

Sanjit A. Seshia2, Moshe Y. Vardi3

1Indian Institute of Technology Bombay, India
2University of California, Berkeley
3Rice University

(Author names are ordered alphabetically by last name)

How do we guarantee that systems work

correctly ?

Functional Verification

▪ Formal verification

▪ Challenges: formal requirements, scalability

▪ ~10-15% of verification effort

▪ Dynamic verification: dominant approach

2

Dynamic Verification

▪ Design is simulated with test vectors

▪ Test vectors represent different

verification scenarios

▪ Results from simulation compared to

intended results

▪ Challenge: Exceedingly large test space!

3

Motivating Example

a b

c

64 bit 64 bit

64 bit

c = f(a,b)

How do we test the circuit works ?

• Try for all values of a and b

• 2128 possibilities

• Sun will go nova before done!

• Not scalable

4

Constrained-Random Simulation

▪ Test vectors: solutions of constraints

▪ Proposed by Lichtenstein, Malka, Aharon (IAAI 94)
5

a b

c

64 bit

64 bit

64 bit

c = f(a,b)

Sources for Constraints

• Designers:

1. a +64 11 *32 b = 12

2. a <64 (b >> 4)

• Past Experience:

1. 40 <64 34 + a <64 5050

2. 120 <64 b <64 230

• Users:

1. 232 *32 a + b != 1100

2. 1020 <64 (b /64 2) +64 a <64 2200

Constrained-Random

Simulation

Problem: How can we uniformly sample the values of a and

b satisfying the above constraints? 6

a b

c

64 bit

64 bit

64 bit

c = f(a,b)

Sources for Constraints

• Designers:

1. a +64 11 *32 b = 12

2. a <64 (b >> 4)

• Past Experience:

1. 40 <64 34 + a <64 5050

2. 120 <64 b <64 230

• Users:

1. 232 *32 a + b != 1100

2. 1020 <64 (b /64 2) +64 a <64 2200

Problem Formulation

Set of Constraints

Sample satisfying assignments

uniformly at random

SAT Formula

Scalable Uniform Generation of SAT Witnesses
7

a b

c

64 bit

64 bit

64 bit

c = f(a,b)

Prior Work

8Performance

G
u

a
ra

n
te

e
s

MCMC

SAT-Based

BGP BDD

UniWit

UniGen

9

Near-Uniformity
• : Input formula

• : Solution space

Guarantees of UniGen

Drawbacks of UniGen

10

Makes a large number (polynomial in 1/ε) of

calls to a SAT solver to generate a single sample

Generator Relative Runtime

UniGen 470

Desired Uniform Generator* 10

Simple SAT solver 1

*: Based on EDA Industry

Outline

▪ UniGen2: Next Generation UniGen

▪ Core Technical Ideas

▪ Experimental Results

▪ Parallelization of Constrained Random

Simulation

▪ Conclusion

11

12

Main Idea

13

Cells should be roughly equal in size and small

enough to enumerate completely

Partitioning into cells

Partitioning into cells

▪ Too large => Hard to enumerate

▪ Too small => Variance can be very high

▪ hiThresh: upper bound on size of cell

▪ loThresh: lower bound on size of cell

▪ E.g., loThresh = 11, hiThresh = 60

14

15

Partitioning into cells

16

Pick a random cell

Pick loThresh solutions randomly from this cell

Partitioning into cells

Partitioning into cells

How can we partition into roughly

equal small cells without knowing the

distribution of solutions?

3-Universal Hashing using random XORs

[Carter-Wegman 1979, Sipser 1983]

17

A Few more Questions?

▪ How many cells do we need?

▪ How to enumerate solutions in a cell?

18

19

▪ Need to pick cell count so that cells are in the

desired size range with high probability

▪ Linear search technique based on model

counting

▪ Preprocessing step

▪ Needs to be done only once per input formula

How many cells do we need?

Enumerating cell solutions

▪ A cell can be represented as the conjunction of:

▪ Input formula F

▪ m random XOR constraints

▪ 2m is the number of cells desired

▪ Use CryptoMiniSAT for CNF + XOR formulas

20

Strong Guarantees

▪

▪ Polynomial Constant number of

SAT calls per sample

21

A Question from CRV expert

▪ Are all the samples independent?

▪ Independence allows coverage

guarantees.

22Well, No but Yes

23

3-Universal hash functions:

▪ Choose hash function randomly

▪ For arbitrary distribution on solutions=> All cells are

roughly equal in expectation

▪ But:

▪ While each input is hashed uniformly

▪ And each 3-solutions set is hashed independently

▪ A 4-solutions set might not be hashed independently

3-Universal and Independence

of Samples

▪ Choosing 3 samples => Full Independence

between samples

▪ Choosing loThresh (> 3) samples => Loss of

full independence among samples

▪ “Almost-Independence”

▪ Still provides theoretical guarantees of coverage

24

3-Universal and
Independence of samples

Bug-finding effectiveness

25

bug frequency f = B/RF

Simply put,

#of SAT calls for UniGen2 << # of SAT calls for UniGen

Bug-finding effectiveness

UniGen UniGen2

Expected number

of SAT calls

4.35 × 107 3.38 × 106

26

bug frequency f = 1/104

find bug with probability ≥ 1/2

An order of magnitude difference!

~20 times faster than UniGen

0.01

0.1

1

10

100

1000
s1

23
8

a_
3_

2

s1
19

6
a_

3_
2

s8
32

a
_

15
_

7

ca
se

_
1

_
b1

2
_

2

sq
u

ar
in

g1
6

sq
u

ar
in

g7

do
u

bl
yL

in
ke

dL
is

t

L
og

in
S

er
vi

ce
2

S
or

t

20
.s

k

en
qu

eu
e

K
ar

a
ts

u
ba

ll
tr

av
er

sa
l

ll
re

ve
rs

e

di
ag

S
te

n
ci

l_
n

ew

tu
to

ri
al

3

de
m

o2
_

n
ew

Time

per
sample

(s)

Benchmarks

UniGen2

UniGen

27

Runtime Performance

28

Generator Relative Runtime

UniGen 470

UniGen2 21

Desired Uniform Generator* 10

Simple SAT solver 1

*: Based on EDA Industry

Experiments over 200+ benchmarks

Outline

▪ UniGen2: Next Generation UniGen

▪ Core Technical Ideas

▪ Experimental Results

▪ Parallelization of Constrained Random

Simulation

▪ Conclusion

29

30

Current Paradigm of Simulation-

based Verification

Test 2 Test 3

Test 4Test 1

Test Generator

Simulator

Simulator
Simulator

Simulator

• Can not be

parallelized since test

generators maintain

“global state”

• Loses theoretical

guarantees (if any) of

uniformity

Test Generator

New Paradigm of Simulation-

based Verification
Simulator

Simulator

Simulator

Simulator

Test Generator

Test Generator

Test Generator

Preprocessing

• Preprocessing needs to be done only once

• No communication required between

different copies of the test generator

• Scales linearly with number of cores in

practice

32

Generator Relative Runtime

UniGen 470

UniGen2 21

Parallel UniGen2 (2 cores) ~10

Desired Uniform Generator* 10

Simple SAT solver 1

Desired Performance with 2 cores

*: Based on EDA Industry

Uniformity Comparison

▪ Benchmark with 16,384 solutions

▪ Ideal Generator: Enumerate all solutions and pick
one randomly

▪ Generated 4M samples for Ideal, UniGen2 &
parallel (on 12 cores) UniGen2

▪ Group solutions according to their frequency

▪ Plot # of solutions vs Frequency

▪ (200,250): 250 solutions appeared 200 times each

▪ In theory, we expect a Poisson distribution

33

Uniformity Comparison

34

0

200

400

600

800

1000

168 189 209 229 249 269 290

#
S

o
lu

ti
o

n
s

Frequency

Uniformity Comparison

35

0

200

400

600

800

1000

168 189 209 229 249 269 290

#
S

o
lu

ti
o

n
s

Frequency

Ideal Sampler

UniGen2

Parallel UniGen2

Outline

▪ UniGen2: Next Generation UniGen

▪ Core Technical Ideas

▪ Experimental Results

▪ Parallelization of Constrained Random

Simulation

▪ Conclusion

36

Takeaways

▪ Uniform generation has diverse applications

▪ Proposed the first scalable parallel approach
that provides strong guarantees

▪ Requires polynomial constant number of SAT
calls per sample

▪ Runs ~20 times faster than prior state-of-the-art
tools, even on a single core

▪ Scales linearly with number of cores

37

Test Generator

New Paradigm of Simulation-

based Verification
Simulator

Simulator

Simulator

Simulator

Test Generator

Test Generator

Test Generator

Preprocessing

And one more thing!

▪ Tool (along with source code) is available

online:

http://tinyurl.com/unigen2

39

http://tinyurl.com/unigen2

