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How do we guarantee that systems work 

correctly ?

Functional Verification

▪ Formal verification

▪ Challenges: formal requirements, scalability

▪ ~10-15% of  verification effort 

▪ Dynamic verification: dominant approach
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Dynamic Verification

▪ Design is simulated with test vectors

▪ Test vectors represent different 

verification scenarios 

▪ Results from simulation compared to 

intended results

▪ Challenge: Exceedingly large test space!
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Motivating Example

a b

c

64 bit 64 bit

64 bit

c = f(a,b)

How do we test the circuit works ?

• Try for all values of  a and b

• 2128 possibilities 

• Sun will go nova before done!

• Not scalable
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Constrained-Random Simulation

▪ Test vectors: solutions of  constraints

▪ Proposed by Lichtenstein, Malka, Aharon (IAAI 94) 
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a b

c

64 bit

64 bit

64 bit

c = f(a,b)

Sources for Constraints

• Designers: 

1. a +64 11 *32 b = 12

2. a <64 (b >> 4)

• Past Experience: 

1. 40 <64 34 + a <64 5050

2. 120 <64 b <64 230

• Users:

1. 232 *32 a + b != 1100

2. 1020 <64 (b /64 2) +64 a <64 2200



Constrained-Random 

Simulation

Problem: How can we uniformly sample the values of a and 

b satisfying the above constraints? 6
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Problem Formulation

Set of  Constraints

Sample satisfying assignments 

uniformly at random

SAT Formula

Scalable Uniform Generation of SAT Witnesses
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Prior Work

8Performance

G
u

a
ra

n
te

e
s 

MCMC

SAT-Based

BGP BDD

UniWit

UniGen



9

Near-Uniformity 
• :   Input formula

• : Solution space

Guarantees of  UniGen



Drawbacks of  UniGen
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Makes a large number (polynomial in 1/ε) of  

calls to a SAT solver to generate a single sample

Generator Relative Runtime

UniGen 470

Desired Uniform Generator* 10

Simple SAT solver 1

*:  Based on EDA Industry



Outline

▪ UniGen2: Next Generation UniGen

▪ Core Technical Ideas 

▪ Experimental Results

▪ Parallelization of  Constrained Random 

Simulation

▪ Conclusion
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Main Idea
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Cells should be roughly equal in size and small 

enough to enumerate completely

Partitioning into cells



Partitioning into cells

▪ Too large => Hard to enumerate

▪ Too small => Variance can be very high

▪ hiThresh: upper bound on size of  cell

▪ loThresh: lower bound on size of  cell

▪ E.g.,  loThresh = 11, hiThresh = 60 
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Partitioning into cells
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Pick a random cell

Pick loThresh solutions randomly from this cell 

Partitioning into cells



Partitioning into cells

How can we partition into roughly 

equal small cells without knowing the 

distribution of solutions? 

3-Universal Hashing using random XORs

[Carter-Wegman 1979, Sipser 1983] 
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A Few more Questions?

▪ How many cells do we need?

▪ How to enumerate solutions in a cell?
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▪ Need to pick cell count so that cells are in the 

desired size range with high probability

▪ Linear search technique based on model 

counting

▪ Preprocessing step

▪ Needs to be done only once per input formula

How many cells do we need?



Enumerating cell solutions

▪ A cell can be represented as the conjunction of: 

▪ Input formula F

▪ m random XOR constraints

▪ 2m is the number of  cells desired

▪ Use CryptoMiniSAT for CNF + XOR formulas

20



Strong Guarantees

▪

▪ Polynomial Constant number of 

SAT calls per sample
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A Question from CRV expert

▪ Are all the samples independent? 

▪ Independence allows coverage 

guarantees. 

22Well, No but Yes
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3-Universal hash functions:

▪ Choose hash function randomly

▪ For arbitrary distribution on solutions=> All cells are 

roughly equal in expectation

▪ But:

▪ While each input is hashed uniformly

▪ And each 3-solutions set is hashed independently

▪ A 4-solutions set might not be hashed independently

3-Universal and Independence 

of  Samples



▪ Choosing 3 samples => Full Independence 

between samples

▪ Choosing loThresh (> 3) samples => Loss of  

full independence among samples

▪ “Almost-Independence”

▪ Still provides theoretical guarantees of  coverage
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3-Universal and 
Independence of  samples



Bug-finding effectiveness
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bug frequency f  = B/RF

Simply put, 

#of  SAT calls for UniGen2 <<  # of  SAT calls for UniGen



Bug-finding effectiveness

UniGen UniGen2

Expected number 

of  SAT calls

4.35 × 107 3.38 × 106
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bug frequency f  = 1/104

find bug with probability ≥ 1/2

An order of  magnitude difference!



~20 times faster than UniGen
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Runtime Performance
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Generator Relative Runtime

UniGen 470

UniGen2 21

Desired Uniform Generator* 10

Simple SAT solver 1

*:  Based on EDA Industry

Experiments over 200+ benchmarks



Outline

▪ UniGen2: Next Generation UniGen

▪ Core Technical Ideas

▪ Experimental Results

▪ Parallelization of Constrained Random 

Simulation

▪ Conclusion
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Current Paradigm of  Simulation-

based Verification

Test 2 Test 3

Test 4Test 1

Test Generator

Simulator

Simulator
Simulator

Simulator

• Can not be 

parallelized since test 

generators maintain 

“global state” 

• Loses theoretical 

guarantees (if  any) of  

uniformity



Test Generator

New Paradigm of  Simulation-

based Verification
Simulator

Simulator

Simulator

Simulator

Test Generator

Test Generator

Test Generator

Preprocessing

• Preprocessing needs to be done only once

• No communication required between 

different copies of  the test generator

• Scales linearly with number of  cores in 

practice
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Generator Relative Runtime

UniGen 470

UniGen2 21

Parallel UniGen2 (2 cores) ~10

Desired Uniform Generator* 10

Simple SAT solver 1

Desired Performance with 2 cores

*:  Based on EDA Industry



Uniformity Comparison

▪ Benchmark with 16,384 solutions

▪ Ideal Generator: Enumerate all solutions and pick 
one randomly

▪ Generated 4M samples for Ideal, UniGen2 & 
parallel (on 12 cores) UniGen2 

▪ Group solutions according to their frequency

▪ Plot # of  solutions vs Frequency 

▪ (200,250): 250 solutions appeared 200 times each

▪ In theory, we expect a Poisson distribution
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Uniformity Comparison
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Uniformity Comparison
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Outline

▪ UniGen2: Next Generation UniGen

▪ Core Technical Ideas

▪ Experimental Results

▪ Parallelization of  Constrained Random 

Simulation

▪ Conclusion
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Takeaways 

▪ Uniform generation has diverse applications

▪ Proposed the first scalable parallel approach 
that provides strong guarantees

▪ Requires polynomial constant number of  SAT 
calls per sample

▪ Runs ~20 times faster than prior state-of-the-art 
tools, even on a single core

▪ Scales  linearly with number of  cores
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Test Generator

New Paradigm of  Simulation-

based Verification
Simulator

Simulator

Simulator

Simulator

Test Generator

Test Generator

Test Generator

Preprocessing



And one more thing!

▪ Tool (along with source code) is available 

online: 

http://tinyurl.com/unigen2
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http://tinyurl.com/unigen2

