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Life in the 21°" Century!




Motivating Example

How do we verify that this circuit works ¢

a b

. ee |
64 bit 64 bit Formal Verification — Not Scalable!

* Randomly sample some a’s and b’s

Division circuit

c=a/b * Wait!l None of the circuits in the past
faulted when 10 < b < 40
64 bit * Finite resources!

* Lets sample from regions where it is likely
to fault



Constraints Design

Designing Constraints
* Designers:
a b 1. 100 <b < 200

64 bit 64 bit 2. 300< a< 451
3. 40<a<50and 30< b <40

* Past Experience:

c=dP 1. 400 < a < 2000
2. 120<b < 230
e Users:
64 bit 1. 1000<a < 1100

c 2. 20000 < b < a < 22000

Problem: How can we uniformly sample the values of aand b
satisfying the above constraints?



Uniform Generation of SAT-Witnesses
=

Set of Constraints

SAT Formula

Given a SAT formula, can one uniformly sample solutions
without enumerating all solutions

Uniform Generation of SAT-Witnesses



Uniform Generation of SAT-Witnesses
.

Set of Constraints

SAT Formula

Given a SAT formula, can one uniformly sample solutions
without enumerating all solutions while scaling to real world
problems?

Scalable Uniform Generation of SAT-Witnesses



Overview

Prior Work & Our Approach
Theoretical Results
Experimental Results

Where do we go from here?



Prior Work

BDD-based SAT-based heuristics
Guarantees: strong Guarantees: weak INDUSTRY
Performance: weak Performance: strong
Theoretical Work Heuristic Work
Guarantees: strong Guarantees: weak ACADEMIA
Performance: weak Performance: strong

BGP Algorithm XORSample’



QOur Contribution

BDD-based SAT-based heuristics
Guarantees: strong Guarantees: weak INDUSTRY
Performance: weak UniWit Performance: strong
Guarantees: strong
Performance: strong
Theoretical Work Heuristic Work
Guarantees: strong Guarantees: weak ACADEMIA
Performance: weak Performance: strong

BGP Algorithm XORSample’



Central Idea




small” cells

Partitioning into equal “




How to Partition?

How to partition into roughly equal
small cells of solutions without
knowing the distribution of solutions?

Universal Hashing
[Carter-Wegman 1979, Sipser 1983]



Lower Universality Lower Complexity

H(n,m,r): Family of r-universal hash functions
mapping {0,1}" to {0,1}™ (2"elements to 2™ cells)

Higher the r => Stronger guarantees on range of
size of cells

r-wise universality => Polynomials of degree r-1

Lower universality => lower complexity



Hashing-Based Approaches
T

Solution space

n-universal hashing

BGP Algorithm

All cells should be small

Uniform Generation



Scaling to Thousands of Variables

n-universal hashing 2-universal hashing

Random

BGP Algorithm UniWit

All cells should be small Only a randomly chosen
cells needs to be “small”

Uniform Generation Near Uniform Generation



Scaling to Thousands of Variables

Solution space

n-univ . T T
From tens of variables to
thousands of variables!

BGP Algorithm - A UniWit

All cells should be small Only a randomly chosen
cells needs to be “small”

Uniform Generation Near Uniform Generation



Highlights

Employs XOR-based hash functions instead of
computationally infeasible algebraic hash functions

Uses off-the-shelf SAT solver CryptoMiniSAT
(MiniSAT+XOR support)



Strong Theoretical Guarantees
B

O] Uniformity

For every solution y of R,

Pr [y is output] = 1/1R;]




Strong Theoretical Guarantees

Near Uniformity

For every solution y of R

Pr [y is output] >=1/8 x 1/|R]|

Success Probability

Algorithm UniWit succeeds with probability at least 1/8

Polynomial: O(n3/2) calls to SAT Solver



Experimental Methodology

Benchmarks (over 200)

Bit-blasted versions of word level constraints from VHDL

designs

Bit-blasted versions from SMTLib version and ISCAS’85
Obijectives

Comparison with algorithms BGP & XORSample’
Uniformity

Performance



Better Uniformity than State-of-art Generators

Frequency
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* Benchmark: casel10.cnf;
e Total Runs: 1.08x108; Total Solutions : 16384
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12000 16000

Hvar: 287; #Hclauses: 1263

 XORSample could not find 772 solutions and more than 250
solutions were generated only once



2-3 Orders of Magnitude Faster
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2-3 Orders of Magnitude Faster
I

100000
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* UniWit is is 2-3 orders of magnitude faster than XORSample’

* Observed success probability = 0.6 ( >> theoretical guarantee of 0.125)
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Key Takeaways

Uniform sampling is an important problem
Prior work didn’t scale or offered weak guarantees

We use 2-wise independent hash function to divide
solution space into “small” partitions

Only a randomly chosen partition has to be small
Theoretical guarantees of near uniformity

Major improvements in running time and uniformity
compared to the existing generators

Tool is available at


http://www.cfdvs.iitb.ac.in/reports/UniWit/

Where Do We Go From Here?

]
1 Extensionto SMT

- Extending the technique to model counting (CP’1 3)
o Stronger Guarantees

-1 Efficient hash functions



Discussion
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Select a solution randomly with
probability “c” from the
partition. If no solution is
picked, return Failure




