
A Scalable and Nearly Uniform

Generator of SAT Witnesses

Supratik Chakraborty1, Kuldeep S Meel2, Moshe Y Vardi2

1Indian Institute of Technology Bombay, India
2Department of Computer Science, Rice University

CAV 2013

Life in the 21st Century!

How do we guarantee that the systems work correctly ?

Motivating Example

a b

c

64 bit 64 bit

64 bit

Division circuit

c = a/b

How do we verify that this circuit works ?

• Formal Verification – Not Scalable!

• Randomly sample some a’s and b’s

• Wait! None of the circuits in the past

faulted when 10 < b < 40

• Finite resources!

• Lets sample from regions where it is likely

to fault

Constraints Design

Designing Constraints

• Designers:

1. 100 < b < 200

2. 300 < a < 451

3. 40 < a < 50 and 30 < b < 40

• Past Experience:

1. 400 < a < 2000

2. 120 < b < 230

• Users:

1. 1000<a < 1100

2. 20000 < b < a < 22000

Problem: How can we uniformly sample the values of a and b

satisfying the above constraints?

4

a b

c

64 bit

64 bit

c = ab

64 bit

Set of Constraints

Given a SAT formula, can one uniformly sample solutions

without enumerating all solutions

SAT Formula

5

Uniform Generation of SAT-Witnesses

Set of Constraints

Given a SAT formula, can one uniformly sample solutions

without enumerating all solutions while scaling to real world

problems?

SAT Formula

6

Uniform Generation of SAT-Witnesses

Overview

 Prior Work & Our Approach

 Theoretical Results

 Experimental Results

 Where do we go from here?

Prior Work

Heuristic Work

Guarantees: weak

Performance: strong

BGP Algorithm XORSample’

Theoretical Work

Guarantees: strong

Performance: weak

BDD-based

Guarantees: strong

Performance: weak

SAT-based heuristics

Guarantees: weak

Performance: strong

INDUSTRY

ACADEMIA

8

Our Contribution

Heuristic Work

Guarantees: weak

Performance: strong

BGP Algorithm XORSample’

Theoretical Work

Guarantees: strong

Performance: weak

BDD-based

Guarantees: strong

Performance: weak

SAT-based heuristics

Guarantees: weak

Performance: strong

INDUSTRY

ACADEMIA

UniWit

Guarantees : strong

Performance: strong

9

Central Idea
10

Partitioning into equal “small” cells
11

How to Partition?

How to partition into roughly equal

small cells of solutions without

knowing the distribution of solutions?

Universal Hashing

[Carter-Wegman 1979, Sipser 1983]

12

Lower Universality Lower Complexity

 H(n,m,r): Family of r-universal hash functions

mapping {0,1}n to {0,1}m (2n elements to 2m cells)

 Higher the r => Stronger guarantees on range of

size of cells

 r-wise universality => Polynomials of degree r-1

 Lower universality => lower complexity

13

Hashing-Based Approaches

Prior
Work

Random

Partitioned space

N-independent
Hashing

Partitioned space

 All cells are “small” A random cells is “small”

3-independent
Hashing

RF : Solution space

Our
Approach

Small :

Prior
Work

Random

Partitioned space

N-independent
Hashing

Partitioned space

 All cells are “small” A random cells is “small”

3-independent
Hashing

RF : Solution space

Our
Approach

Small :

n-universal hashing

Uniform Generation

All cells should be small

BGP Algorithm

14

Solution space

Scaling to Thousands of Variables

Prior
Work

Random

Partitioned space

N-independent
Hashing

Partitioned space

 All cells are “small” A random cells is “small”

3-independent
Hashing

RF : Solution space

Our
Approach

Small :

Prior
Work

Random

Partitioned space

N-independent
Hashing

Partitioned space

 All cells are “small” A random cells is “small”

3-independent
Hashing

RF : Solution space

Our
Approach

Small :

Prior
Work

Random

Partitioned space

N-independent
Hashing

Partitioned space

 All cells are “small” A random cells is “small”

3-independent
Hashing

RF : Solution space

Our
Approach

Small :
n-universal hashing 2-universal hashing

Uniform Generation

Random

All cells should be small Only a randomly chosen

cells needs to be “small”

BGP Algorithm

Near Uniform Generation

UniWit

15

Solution space

Prior
Work

Random

Partitioned space

N-independent
Hashing

Partitioned space

 All cells are “small” A random cells is “small”

3-independent
Hashing

RF : Solution space

Our
Approach

Small :

Prior
Work

Random

Partitioned space

N-independent
Hashing

Partitioned space

 All cells are “small” A random cells is “small”

3-independent
Hashing

RF : Solution space

Our
Approach

Small :

Prior
Work

Random

Partitioned space

N-independent
Hashing

Partitioned space

 All cells are “small” A random cells is “small”

3-independent
Hashing

RF : Solution space

Our
Approach

Small :
n-universal hashing 2-independent hashing

Uniform Generation

Random

All cells should be small Only a randomly chosen

cells needs to be “small”

BGP Algorithm

Near Uniform Generation

UniWit

16

Solution space

From tens of variables to

thousands of variables!

Scaling to Thousands of Variables

Highlights

 Employs XOR-based hash functions instead of

computationally infeasible algebraic hash functions

 Uses off-the-shelf SAT solver CryptoMiniSAT

(MiniSAT+XOR support)

17

 Uniformity

For every solution y of RF

Pr [y is output] = 1/|RF|

Strong Theoretical Guarantees

 Near Uniformity

 Success Probability

 Polynomial: O(n3/2) calls to SAT Solver

For every solution y of RF

Pr [y is output] >= 1/8 x 1/|RF|

Algorithm UniWit succeeds with probability at least 1/8

Strong Theoretical Guarantees

Experimental Methodology

 Benchmarks (over 200)

 Bit-blasted versions of word level constraints from VHDL

designs

 Bit-blasted versions from SMTLib version and ISCAS’85

 Objectives

 Comparison with algorithms BGP & XORSample’

◼ Uniformity

◼ Performance

Better Uniformity than State-of-art Generators

XORSample’ UniWit

• Benchmark: case110.cnf; #var: 287; #clauses: 1263

• Total Runs: 1.08x108; Total Solutions : 16384

• XORSample’ could not find 772 solutions and more than 250

solutions were generated only once

 1

 10

 100

 1000

 10000

 100000

 0 4000 8000 12000 16000

F
r
e
q
u
e
n
c
y

Solutions

XORSample’
Uniform

Uniform/8

 1

 10

 100

 1000

 10000

 100000

 0 4000 8000 12000 16000

F
r
e
q
u
e
n
c
y

Solutions

Uniwit
Uniform

Uniform/8

21

2-3 Orders of Magnitude Faster

0.1

1

10

100

1000

10000

100000

ca
se
4
7

ca
se
_
3
_
b
1
4
_
3

ca
se
1
0
5

ca
se
8

ca
se
2
0
3

ca
se
1
4
5

ca
se
6
1

ca
se
9

ca
se
1
5

ca
se
1
4
0

ca
se
_
2
_
b
1
4
_
1

ca
se
_
3
_
b
1
4
_
1

sq
u
a
ri
ng
1
4

sq
u
a
ri
ng
7

ca
se
_
2
_
p
tb
_
1

ca
se
_
1
_
p
tb
_
1

ca
se
_
2
_
b
1
4
_
2

ca
se
_
3
_
b
1
4
_
2

Time(s)

Benchmarks

UniWit

XORSample'

22

0.1

1

10

100

1000

10000

100000

ca
se
4
7

ca
se
_
3
_
b
1
4
_
3

ca
se
1
0
5

ca
se
8

ca
se
2
0
3

ca
se
1
4
5

ca
se
6
1

ca
se
9

ca
se
1
5

ca
se
1
4
0

ca
se
_
2
_
b
1
4
_
1

ca
se
_
3
_
b
1
4
_
1

sq
u
a
ri
ng
1
4

sq
u
a
ri
ng
7

ca
se
_
2
_
p
tb
_
1

ca
se
_
1
_
p
tb
_
1

ca
se
_
2
_
b
1
4
_
2

ca
se
_
3
_
b
1
4
_
2

Time(s)

Benchmarks

UniWit

XORSample'

• UniWit is is 2-3 orders of magnitude faster than XORSample’

• Observed success probability = 0.6 (>> theoretical guarantee of 0.125)

23

2-3 Orders of Magnitude Faster

Key Takeaways

 Uniform sampling is an important problem

 Prior work didn’t scale or offered weak guarantees

 We use 2-wise independent hash function to divide

solution space into “small” partitions

 Only a randomly chosen partition has to be small

 Theoretical guarantees of near uniformity

 Major improvements in running time and uniformity

compared to the existing generators

 Tool is available at

http://www.cfdvs.iitb.ac.in/reports/UniWit/

http://www.cfdvs.iitb.ac.in/reports/UniWit/

Where Do We Go From Here?

 Extension to SMT

 Extending the technique to model counting (CP’13)

 Stronger Guarantees

 Efficient hash functions

Discussion

Thank You for your attention!

Acknowledgments

• NSF

• ExCAPE

• Intel

• BRNS, India

• Sun Microsystems

• Sigma Solutions,Inc

UniWit

RF

UniWit

RF

NO

UniWit

UniWit

NO

UniWit

UniWit

YES

UniWit

YES Select a solution randomly with

probability “c” from the

partition. If no solution is

picked, return Failure

