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Life in the 21st Century!

How do we guarantee that the systems work correctly ?



Motivating Example

a b

c

64 bit 64 bit

64 bit

Division circuit

c = a/b

How do we verify that this circuit works ?

• Formal Verification – Not Scalable!

• Randomly sample some a’s and b’s

• Wait! None of the circuits in the past 

faulted when 10 < b < 40

• Finite resources! 

• Lets sample from regions where it is likely 

to fault



Constraints Design

Designing Constraints

• Designers: 

1. 100 < b < 200

2. 300 < a < 451

3. 40 < a < 50 and 30 < b < 40

• Past Experience: 

1. 400 < a < 2000

2. 120 < b < 230

• Users:

1. 1000<a < 1100

2. 20000 < b < a < 22000

Problem: How can we uniformly sample the values of a and b 

satisfying the above constraints?
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a b

c

64 bit

64 bit

c = ab

64 bit



Set of Constraints

Given a SAT formula, can one uniformly sample solutions 

without enumerating all solutions

SAT Formula
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Uniform Generation of SAT-Witnesses



Set of Constraints

Given a SAT formula, can one uniformly sample solutions 

without enumerating all solutions while scaling to real world 

problems? 

SAT Formula
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Uniform Generation of SAT-Witnesses



Overview

 Prior Work & Our Approach

 Theoretical Results

 Experimental Results

 Where do we go from here?



Prior Work

Heuristic Work

Guarantees: weak

Performance: strong 

BGP Algorithm XORSample’

Theoretical Work

Guarantees: strong

Performance: weak

BDD-based

Guarantees: strong

Performance: weak

SAT-based heuristics

Guarantees: weak

Performance: strong 

INDUSTRY

ACADEMIA
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Our Contribution

Heuristic Work

Guarantees: weak

Performance: strong 

BGP Algorithm XORSample’

Theoretical Work

Guarantees: strong

Performance: weak

BDD-based

Guarantees: strong

Performance: weak

SAT-based heuristics

Guarantees: weak

Performance: strong 

INDUSTRY

ACADEMIA

UniWit

Guarantees : strong

Performance: strong
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Central Idea
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Partitioning into equal “small” cells
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How to Partition?

How to partition into roughly equal 

small cells of solutions without 

knowing the distribution of solutions? 

Universal Hashing

[Carter-Wegman 1979, Sipser 1983] 
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Lower Universality      Lower Complexity

 H(n,m,r): Family of r-universal hash functions

mapping {0,1}n to {0,1}m  (2n elements to 2m cells)

 Higher the r =>  Stronger guarantees on range of 

size of cells

 r-wise universality => Polynomials of degree r-1

 Lower universality => lower complexity
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Hashing-Based Approaches

Prior
Work

Random

Partitioned space

N-independent
Hashing

Partitioned space

 All cells are “small” A random cells is “small”

3-independent
Hashing

RF : Solution space

Our 
Approach

Small :

Prior
Work

Random

Partitioned space

N-independent
Hashing

Partitioned space

 All cells are “small” A random cells is “small”

3-independent
Hashing

RF : Solution space

Our 
Approach

Small :

n-universal hashing

Uniform Generation

All cells should be small

BGP Algorithm
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Scaling to Thousands of Variables

Prior
Work

Random

Partitioned space

N-independent
Hashing

Partitioned space

 All cells are “small” A random cells is “small”

3-independent
Hashing

RF : Solution space

Our 
Approach

Small :

Prior
Work

Random

Partitioned space

N-independent
Hashing

Partitioned space

 All cells are “small” A random cells is “small”

3-independent
Hashing

RF : Solution space

Our 
Approach

Small :

Prior
Work

Random

Partitioned space

N-independent
Hashing

Partitioned space

 All cells are “small” A random cells is “small”

3-independent
Hashing

RF : Solution space

Our 
Approach

Small :
n-universal hashing 2-universal hashing

Uniform Generation

Random

All cells should be small Only a randomly chosen 

cells needs to be “small”

BGP Algorithm

Near Uniform Generation

UniWit
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Solution space

From tens of variables to 

thousands of variables! 

Scaling to Thousands of Variables



Highlights

 Employs XOR-based hash functions instead of 

computationally infeasible algebraic hash functions

 Uses off-the-shelf SAT solver CryptoMiniSAT

(MiniSAT+XOR support)
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 Uniformity

For every solution y of RF

Pr [y is output]    =          1/|RF|

Strong Theoretical Guarantees



 Near Uniformity

 Success Probability

 Polynomial: O(n3/2) calls to SAT Solver

For every solution y of RF

Pr [y is output] >= 1/8 x 1/|RF|

Algorithm UniWit succeeds with probability at least 1/8

Strong Theoretical Guarantees



Experimental Methodology

 Benchmarks (over 200)

 Bit-blasted versions of word level constraints from VHDL 

designs

 Bit-blasted versions from SMTLib version and ISCAS’85 

 Objectives

 Comparison with algorithms BGP & XORSample’

◼ Uniformity

◼ Performance



Better Uniformity than State-of-art Generators

XORSample’ UniWit

• Benchmark: case110.cnf;   #var: 287;  #clauses: 1263

• Total Runs: 1.08x108; Total Solutions : 16384

• XORSample’ could not find 772 solutions and more than 250 

solutions were generated only once

 1

 10

 100

 1000

 10000

 100000

 0  4000  8000  12000  16000

F
r
e
q
u
e
n
c
y

Solutions

XORSample’
Uniform

Uniform/8

 1

 10

 100

 1000

 10000

 100000

 0  4000  8000  12000  16000

F
r
e
q
u
e
n
c
y

Solutions

Uniwit
Uniform

Uniform/8

21



2-3 Orders of Magnitude Faster
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• UniWit is is 2-3 orders of magnitude faster than XORSample’

• Observed success probability = 0.6 ( >> theoretical guarantee of 0.125)
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2-3 Orders of Magnitude Faster



Key Takeaways

 Uniform sampling is an important problem

 Prior work didn’t scale or offered weak guarantees

 We use 2-wise independent hash function to divide 

solution space into “small” partitions 

 Only a randomly chosen partition has to be small

 Theoretical guarantees of near uniformity

 Major improvements in running time and uniformity 

compared to the existing generators

 Tool is available at 

http://www.cfdvs.iitb.ac.in/reports/UniWit/

http://www.cfdvs.iitb.ac.in/reports/UniWit/


Where Do We Go From Here?

 Extension to SMT

 Extending the technique to model counting (CP’13)

 Stronger Guarantees

 Efficient hash functions



Discussion

Thank You for your attention!
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UniWit

YES Select a solution randomly with 

probability “c” from the 

partition. If no solution is 

picked, return Failure


