
A Scalable and Nearly Uniform

Generator of SAT Witnesses

Supratik Chakraborty1, Kuldeep S Meel2, Moshe Y Vardi2

1Indian Institute of Technology Bombay, India
2Department of Computer Science, Rice University

CAV 2013

Life in the 21st Century!

How do we guarantee that the systems work correctly ?

Motivating Example

a b

c

64 bit 64 bit

64 bit

Division circuit

c = a/b

How do we verify that this circuit works ?

• Formal Verification – Not Scalable!

• Randomly sample some a’s and b’s

• Wait! None of the circuits in the past

faulted when 10 < b < 40

• Finite resources!

• Lets sample from regions where it is likely

to fault

Constraints Design

Designing Constraints

• Designers:

1. 100 < b < 200

2. 300 < a < 451

3. 40 < a < 50 and 30 < b < 40

• Past Experience:

1. 400 < a < 2000

2. 120 < b < 230

• Users:

1. 1000<a < 1100

2. 20000 < b < a < 22000

Problem: How can we uniformly sample the values of a and b

satisfying the above constraints?

4

a b

c

64 bit

64 bit

c = ab

64 bit

Set of Constraints

Given a SAT formula, can one uniformly sample solutions

without enumerating all solutions

SAT Formula

5

Uniform Generation of SAT-Witnesses

Set of Constraints

Given a SAT formula, can one uniformly sample solutions

without enumerating all solutions while scaling to real world

problems?

SAT Formula

6

Uniform Generation of SAT-Witnesses

Overview

 Prior Work & Our Approach

 Theoretical Results

 Experimental Results

 Where do we go from here?

Prior Work

Heuristic Work

Guarantees: weak

Performance: strong

BGP Algorithm XORSample’

Theoretical Work

Guarantees: strong

Performance: weak

BDD-based

Guarantees: strong

Performance: weak

SAT-based heuristics

Guarantees: weak

Performance: strong

INDUSTRY

ACADEMIA

8

Our Contribution

Heuristic Work

Guarantees: weak

Performance: strong

BGP Algorithm XORSample’

Theoretical Work

Guarantees: strong

Performance: weak

BDD-based

Guarantees: strong

Performance: weak

SAT-based heuristics

Guarantees: weak

Performance: strong

INDUSTRY

ACADEMIA

UniWit

Guarantees : strong

Performance: strong

9

Central Idea
10

Partitioning into equal “small” cells
11

How to Partition?

How to partition into roughly equal

small cells of solutions without

knowing the distribution of solutions?

Universal Hashing

[Carter-Wegman 1979, Sipser 1983]

12

Lower Universality Lower Complexity

 H(n,m,r): Family of r-universal hash functions

mapping {0,1}n to {0,1}m (2n elements to 2m cells)

 Higher the r => Stronger guarantees on range of

size of cells

 r-wise universality => Polynomials of degree r-1

 Lower universality => lower complexity

13

Hashing-Based Approaches

Prior
Work

Random

Partitioned space

N-independent
Hashing

Partitioned space

 All cells are “small” A random cells is “small”

3-independent
Hashing

RF : Solution space

Our
Approach

Small :

Prior
Work

Random

Partitioned space

N-independent
Hashing

Partitioned space

 All cells are “small” A random cells is “small”

3-independent
Hashing

RF : Solution space

Our
Approach

Small :

n-universal hashing

Uniform Generation

All cells should be small

BGP Algorithm

14

Solution space

Scaling to Thousands of Variables

Prior
Work

Random

Partitioned space

N-independent
Hashing

Partitioned space

 All cells are “small” A random cells is “small”

3-independent
Hashing

RF : Solution space

Our
Approach

Small :

Prior
Work

Random

Partitioned space

N-independent
Hashing

Partitioned space

 All cells are “small” A random cells is “small”

3-independent
Hashing

RF : Solution space

Our
Approach

Small :

Prior
Work

Random

Partitioned space

N-independent
Hashing

Partitioned space

 All cells are “small” A random cells is “small”

3-independent
Hashing

RF : Solution space

Our
Approach

Small :
n-universal hashing 2-universal hashing

Uniform Generation

Random

All cells should be small Only a randomly chosen

cells needs to be “small”

BGP Algorithm

Near Uniform Generation

UniWit

15

Solution space

Prior
Work

Random

Partitioned space

N-independent
Hashing

Partitioned space

 All cells are “small” A random cells is “small”

3-independent
Hashing

RF : Solution space

Our
Approach

Small :

Prior
Work

Random

Partitioned space

N-independent
Hashing

Partitioned space

 All cells are “small” A random cells is “small”

3-independent
Hashing

RF : Solution space

Our
Approach

Small :

Prior
Work

Random

Partitioned space

N-independent
Hashing

Partitioned space

 All cells are “small” A random cells is “small”

3-independent
Hashing

RF : Solution space

Our
Approach

Small :
n-universal hashing 2-independent hashing

Uniform Generation

Random

All cells should be small Only a randomly chosen

cells needs to be “small”

BGP Algorithm

Near Uniform Generation

UniWit

16

Solution space

From tens of variables to

thousands of variables!

Scaling to Thousands of Variables

Highlights

 Employs XOR-based hash functions instead of

computationally infeasible algebraic hash functions

 Uses off-the-shelf SAT solver CryptoMiniSAT

(MiniSAT+XOR support)

17

 Uniformity

For every solution y of RF

Pr [y is output] = 1/|RF|

Strong Theoretical Guarantees

 Near Uniformity

 Success Probability

 Polynomial: O(n3/2) calls to SAT Solver

For every solution y of RF

Pr [y is output] >= 1/8 x 1/|RF|

Algorithm UniWit succeeds with probability at least 1/8

Strong Theoretical Guarantees

Experimental Methodology

 Benchmarks (over 200)

 Bit-blasted versions of word level constraints from VHDL

designs

 Bit-blasted versions from SMTLib version and ISCAS’85

 Objectives

 Comparison with algorithms BGP & XORSample’

◼ Uniformity

◼ Performance

Better Uniformity than State-of-art Generators

XORSample’ UniWit

• Benchmark: case110.cnf; #var: 287; #clauses: 1263

• Total Runs: 1.08x108; Total Solutions : 16384

• XORSample’ could not find 772 solutions and more than 250

solutions were generated only once

 1

 10

 100

 1000

 10000

 100000

 0 4000 8000 12000 16000

F
r
e
q
u
e
n
c
y

Solutions

XORSample’
Uniform

Uniform/8

 1

 10

 100

 1000

 10000

 100000

 0 4000 8000 12000 16000

F
r
e
q
u
e
n
c
y

Solutions

Uniwit
Uniform

Uniform/8

21

2-3 Orders of Magnitude Faster

0.1

1

10

100

1000

10000

100000

ca
se
4
7

ca
se
_
3
_
b
1
4
_
3

ca
se
1
0
5

ca
se
8

ca
se
2
0
3

ca
se
1
4
5

ca
se
6
1

ca
se
9

ca
se
1
5

ca
se
1
4
0

ca
se
_
2
_
b
1
4
_
1

ca
se
_
3
_
b
1
4
_
1

sq
u
a
ri
ng
1
4

sq
u
a
ri
ng
7

ca
se
_
2
_
p
tb
_
1

ca
se
_
1
_
p
tb
_
1

ca
se
_
2
_
b
1
4
_
2

ca
se
_
3
_
b
1
4
_
2

Time(s)

Benchmarks

UniWit

XORSample'

22

0.1

1

10

100

1000

10000

100000

ca
se
4
7

ca
se
_
3
_
b
1
4
_
3

ca
se
1
0
5

ca
se
8

ca
se
2
0
3

ca
se
1
4
5

ca
se
6
1

ca
se
9

ca
se
1
5

ca
se
1
4
0

ca
se
_
2
_
b
1
4
_
1

ca
se
_
3
_
b
1
4
_
1

sq
u
a
ri
ng
1
4

sq
u
a
ri
ng
7

ca
se
_
2
_
p
tb
_
1

ca
se
_
1
_
p
tb
_
1

ca
se
_
2
_
b
1
4
_
2

ca
se
_
3
_
b
1
4
_
2

Time(s)

Benchmarks

UniWit

XORSample'

• UniWit is is 2-3 orders of magnitude faster than XORSample’

• Observed success probability = 0.6 (>> theoretical guarantee of 0.125)

23

2-3 Orders of Magnitude Faster

Key Takeaways

 Uniform sampling is an important problem

 Prior work didn’t scale or offered weak guarantees

 We use 2-wise independent hash function to divide

solution space into “small” partitions

 Only a randomly chosen partition has to be small

 Theoretical guarantees of near uniformity

 Major improvements in running time and uniformity

compared to the existing generators

 Tool is available at

http://www.cfdvs.iitb.ac.in/reports/UniWit/

http://www.cfdvs.iitb.ac.in/reports/UniWit/

Where Do We Go From Here?

 Extension to SMT

 Extending the technique to model counting (CP’13)

 Stronger Guarantees

 Efficient hash functions

Discussion

Thank You for your attention!

Acknowledgments

• NSF

• ExCAPE

• Intel

• BRNS, India

• Sun Microsystems

• Sigma Solutions,Inc

UniWit

RF

UniWit

RF

NO

UniWit

UniWit

NO

UniWit

UniWit

YES

UniWit

YES Select a solution randomly with

probability “c” from the

partition. If no solution is

picked, return Failure

