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What is Model Counting? 

¨  Given a SAT formula F 
¨  RF: Set of all solutions of F 
¨  Problem (#SAT): Estimate the number of solutions of 

F (#F) i.e., what is the cardinality of RF? 
¨  E.g., F = (a v b) 
¨  RF = {(0,1), (1,0), (1,1)} 
¨  The number of solutions (#F) = 3 
 

 

#P: The class of counting problems for decision 
problems in NP! 
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Practical Applications 
3 

Exciting range of applications! 
 
¨  Probabilistic reasoning/Bayesian inference  
 
¨  Planning with uncertainty 
 
¨  Multi-agent/ adversarial reasoning  
[Roth 96, Sang 04, Bacchus 04, Domshlak 07] 



But it is hard!  
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¨  #SAT is #P-complete 
¤ Even for counting solutions of 2-CNF SAT 
 

¨  #P is really hard! 
¤ Believed to be much harder than NP-complete 

problems 
¤ PH    P#P ✓



The Hardness of Model Counting 
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The Hardness of Model Counting 
6 

Can we do better? 
Approximate counting (with guarantees) suffices for most 
of the applications 
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Prior Work 
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Counters Guarantee  Confidence Remarks 

Exact counter  
(e.g. sharpSAT, Cachet) 

 C = #F  1 Poor Scalability 

Lower bound counters 
(e.g. MBound, 
SampleCount) 

C ≤ #F δ	
 Very weak 
guarantees 

Upper bound 
counters(e.g.  
MiniCount) 

C ≥ #F δ	
 Very weak 
guarantees 

Input Formula: F;   Total Solutions: #F;  Return Value: C 



Approximate Model Counting 
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Design an approximate model counter G: 
¨  inputs:  

¤ CNF formula F  
¤  tolerance ε	

¤   confidence δ	

	


¨  the count returned by it is within ε of the #F with 
confidence at least δ	




Approximate Model Counting 
9 

Design an approximate model counter G: 
¨  inputs:  

¤ CNF formula F  
¤  tolerance ε	

¤   confidence δ	

	


¨  the count returned by it is within ε of the #F with 
confidence at least δ and scales to real world problems	


Lies in the 2nd level of Polynomial hierarchy: Σ2
P   



Our Contribution 
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Input Formula: F;   Total Solutions: #F 

Counters Guarantee  Confidence Remarks 

Exact counter  
(e.g. sharpSAT, Cachet) 

 C = #F  1 Poor Scalability 

ApproxMC #F/(1+ε)≤ C  ≤ (1+ ε) #F	

 

δ	

 

Scalability +  
Strong guarantees 
 

Lower bound counters 
(e.g. MBound, 
SampleCount) 

C ≤ #F δ	
 Very weak 
guarantees 

Upper bound 
counters(e.g.  
MiniCount 

C ≥ #F δ	
 Very weak 
guarantees 



Overview 
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¨  Our approach 
¨  Theoretical results 
¨  Experimental results 
¨  Where do we go from here? 



How do we count? 
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Explicit Enumeration: Not Scalable  
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Not Scalable!  

•  Enumerate (almost) all 
solutions 

•  Exact Counting! 
•  Cachet, Relsat, sharpSAT 



Counting through Partitioning 
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Counting through Partitioning  
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Pick a random cell 

Total # of solutions= #solutions in the cell 
* total # of cells 



Algorithm in Action 
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Algorithm in Action 
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How to Partition? 

How to partition into roughly equal 
small cells of solutions without 
knowing the distribution of solutions?  

Universal Hashing 
[Carter-Wegman 1979, Sipser 1983]  
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Universal Hashing 
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¨  Hash functions from mapping {0,1}n  to {0,1}m  (2n elements to 
2m cells) 

 
¨  Random inputs => All cells are roughly small 
 

¨  Universal hash functions: 
¤ Adversarial (any distribution) inputs => All cells are roughly small 
 

¨  Need stronger bounds on range of the size of cells 



Higher Universality      Stronger Guarantees 

¨  H(n,m,r): Family of r-universal hash functions 
mapping {0,1}n  to {0,1}m  (2n elements to 2m cells) 

¨  Higher the r =>  Stronger guarantees on range of 
size of cells 

 
¨  r-wise universality => Polynomials of degree r-1 
 
¨  Lower universality => lower complexity 
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Highlights of Our Hashing 

¨  Employs XOR-based hash functions instead of 
computationally infeasible algebraic hash functions 

 
 
¨  Uses off-the-shelf SAT solver CryptoMiniSAT 

(MiniSAT+XOR support) 
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Strong Theoretical Results 
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ApproxMC (CNF: F, tolerance: ε, 
confidence:δ)	

Suppose ApproxMC(F,ε,δ) returns C. Then, 
 

Pr [ #F/(1+ε)≤ C  ≤ (1+ ε) #F ] ≥ δ	

 
	

 
ApproxMC runs in time polynomial in log (1-δ)-1,	

|F|, ε-1 relative to SAT oracle 



Experimental Methodology 
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¨  Benchmarks (over 200) 
¤ Grid networks, DQMR networks, Bayesian networks 
¤ Plan recognition, logistics problems 
¤ Circuit synthesis  

¨  Tolerance: ε= 0.75, Confidence: δ = 0.9 
¨  Objectives 

¤ Comparison with exact counters (Cachet) & bounding 
counters (MiniCount, Hybrid-MBound, SampleCount) 
n Performance 
n Quality of bounds 



Results: Performance Comparison 
24 
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Results: Performance Comparison 
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Can Solve a Large Class of Problems 
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Large class of problems that lie beyond the exact 
counters but can be computed by ApproxMC 
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Mean Error: Only 4% (allowed: 75%) 
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Mean error: 4% – much smaller than the 
theoretical guarantee of 75% 
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Results: Bounding Counters 
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¨  Range of count from bounding counters = C2-C1 
¤ C1: From lower bound counters(MBound/SampleSAT) 
¤ C2: From upper bound counters (MiniCount) 
 
 

¨  Range from ApproxMC: [C/(1+ε), (1+ε)C] 
 
 
¨  Smaller the range, better the algorithm! 



Better Bounds Than Existing Counters 
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ApproxMC improved the upper bounds 
significantly while also improving the lower bounds 
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Key Takeaways 
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¨  Many practical applications can be reduced to 
(approximate) model counting 

¨  ApproxMC is the first scalable approximate model 
counter 

¨  Uses easy-to-implement linear hash functions 
¨  Major improvements in performance and quality of 

bounds compared to existing counters. 
¨  Tools is available at 

http://www.cs.rice.edu/~kgm2/ModelCounting/ 



Where do we go from here? 
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¨  Ongoing work : Probabilistic Inference 

 
¨  Further scaling: Efficient hash functions  
 

¨  Extension to CSP and SMT domains 
 
 
 



Discussion 
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Thank You for your attention! 
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