A Scalable Approximate Model Counter

Supratik Chakraborty¹, Kuldeep S Meel², Moshe Y Vardi²

¹Indian Institute of Technology Bombay, India ²Department of Computer Science, Rice University

Sept 17, 2013

What is Model Counting?

- Given a SAT formula F
- □ R_F: Set of all solutions of F
- Problem (#SAT): Estimate the number of solutions of F (#F) i.e., what is the cardinality of R_F?

$$\square R_{F} = \{(0,1), (1,0), (1,1)\}$$

 \Box The number of solutions (#F) = 3

#P: The class of counting problems for decision problems in NP!

Practical Applications

Exciting range of applications!

Probabilistic reasoning/Bayesian inference

Planning with uncertainty

Multi-agent/ adversarial reasoning
[Roth 96, Sang 04, Bacchus 04, Domshlak 07]

But it is hard!

□ #SAT is #P-complete

Even for counting solutions of 2-CNF SAT

- □ #P is really hard!
 - Believed to be much harder than NP-complete problems
 - DH 🖲 PH

The Hardness of Model Counting

The Hardness of Model Counting

Can we do better?

Approximate counting (with guarantees) suffices for most of the applications

Prior Work

Input Formula: F; Total Solutions: #F; Return Value: C

Counters	Guarantee	Confidence	Remarks
Exact counter (e.g. sharpSAT, Cachet)	C = #F	1	Poor Scalability
Lower bound counters (e.g. MBound, SampleCount)	C ≤ #F	δ	Very weak guarantees
Upper bound counters(e.g. MiniCount)	$C \ge \#F$	δ	Very weak guarantees

Approximate Model Counting

Design an approximate model counter G:

- inputs:
 - CNF formula F
 - **tolerance E**
 - $lacksymbol{\Box}$ confidence δ
- □ the count returned by it is within ϵ of the #F with confidence at least δ

Approximate Model Counting

Approximate Model Counting

Design an approximate model counter G:

- inputs:
 - CNF formula F
 - **tolerance E**
 - \square confidence δ
- The count returned by it is within ε of the #F with confidence at least δ and scales to real world problems

Scalable Approximate Model Counting

Lies in the 2nd level of Polynomial hierarchy: Σ_2^{P}

Our Contribution

Input Formula: F; Total Solutions: #F

Counters	Guarantee	Confidence	Remarks
Exact counter (e.g. sharpSAT, Cachet)	C = #F	1	Poor Scalability
ApproxMC	$\#F/(1+\varepsilon) \le C \le (1+\varepsilon) \#F$	δ	Scalability + Strong guarantees

The First Scalable Approximate Model Counter

Overview

- Our approach
- Theoretical results
- Experimental results
- □ Where do we go from here?

How do we count?

Explicit Enumeration: Not Scalable

- Enumerate (almost) all solutions
- Exact Counting!
- Cachet, Relsat, sharpSAT

Not Scalable!

Counting through Partitioning

Counting through Partitioning

15

Total # of solutions = #solutions in the cell * total # of cells

Algorithm in Action

Algorithm in Action

How to Partition?

How to partition into roughly equal small cells of solutions without knowing the distribution of solutions?

Universal Hashing [Carter-Wegman 1979, Sipser 1983]

Universal Hashing

- 19
- Hash functions from mapping {0,1}ⁿ to {0,1}^m (2ⁿ elements to 2^m cells)
- Random inputs => All cells are roughly small
- Universal hash functions:
 - Adversarial (any distribution) inputs => All cells are roughly small
- Need stronger bounds on range of the size of cells

Higher Universality i Stronger Guarantees

- H(n,m,r): Family of r-universal hash functions mapping {0,1}ⁿ to {0,1}^m (2ⁿ elements to 2^m cells)
- Higher the r => Stronger guarantees on range of size of cells

 \Box r-wise universality => Polynomials of degree r-1

 \Box Lower universality => lower complexity

Highlights of Our Hashing

Employs XOR-based hash functions instead of computationally infeasible algebraic hash functions

 Uses off-the-shelf SAT solver CryptoMiniSAT (MiniSAT+XOR support)

Strong Theoretical Results

ApproxMC (CNF: F, tolerance: ε , confidence: δ) Suppose ApproxMC(F, ε , δ) returns C. Then,

$\Pr\left[\, \#\mathbf{F}/(1+\varepsilon) \le \mathbf{C} \, \le (1+\varepsilon) \, \#\mathbf{F} \, \right] \ge \delta$

ApproxMC runs in time polynomial in log $(1-\delta)^{-1}$, $|F|, \varepsilon^{-1}$ relative to SAT oracle

Experimental Methodology

- Benchmarks (over 200)
 - Grid networks, DQMR networks, Bayesian networks
 - Plan recognition, logistics problems
 - Circuit synthesis
- □ Tolerance: ε = 0.75, Confidence: δ = 0.9
- Objectives
 - Comparison with exact counters (Cachet) & bounding counters (MiniCount, Hybrid-MBound, SampleCount)
 - Performance
 - Quality of bounds

Results: Performance Comparison

Results: Performance Comparison

Can Solve a Large Class of Problems

Mean Error: Only 4% (allowed: 75%)

Mean error: 4% – much smaller than the theoretical guarantee of 75%

Results: Bounding Counters

28

Range of count from bounding counters = C₂-C₁
C₁: From lower bound counters(MBound/SampleSAT)
C₂: From upper bound counters (MiniCount)

□ Range from ApproxMC: $[C/(1+\epsilon), (1+\epsilon)C]$

Smaller the range, better the algorithm!

Better Bounds Than Existing Counters

29

ApproxMC improved the upper bounds significantly while also improving the lower bounds

Key Takeaways

- Many practical applications can be reduced to (approximate) model counting
- ApproxMC is the first scalable approximate model counter
- Uses easy-to-implement linear hash functions
- Major improvements in performance and quality of bounds compared to existing counters.
- Tools is available at

http://www.cs.rice.edu/~kgm2/ModelCounting/

Where do we go from here?

Ongoing work : Probabilistic Inference

Further scaling: Efficient hash functions

Extension to CSP and SMT domains

Discussion

Acknowledgments

- NSF
- ExCAPE
- Intel
- BRNS, India
- Sun Microsystems
- Sigma Solutions,Inc

Thank You for your attention!