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What is Model Counting?

Given a SAT formula F

Re: Set of all solutions of F

Problem (#SAT): Estimate the number of solutions of
F (#F) i.e., what is the cardinality of R.2

E.g., F=(avb)

Re ={(0,1), (1,0), (1,1)}
The number of solutions (#F) = 3

#P: The class of counting problems for decision
problems in NP!



Practical Applications

Exciting range of applications!
Probabilistic reasoning /Bayesian inference
Planning with uncertainty

Multi-agent/ adversarial reasoning
[Roth 96, Sang 04, Bacchus 04, Domshlak 07]



But it is hard!

HSAT is #P-complete
Even for counting solutions of 2-CNF SAT

#P is really hard!

Believed to be much harder than NP-complete
problems

PHE p#?



The Hardness of Model Counting
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Can we do better?
Approximate counting (with guarantees) suffices for most
of the applications



Prior Work

Input Formula: F; Total Solutions: #F; Return Value: C

Exact counter C=#F 1 Poor Scalability
(e.g. sharpSAT, Cachet)

Lower bound counters C < #F 0 Very weak
(e.g. MBound, guarantees
SampleCount)

Upper bound C > #F 0 Very weak
counters(e.qg. guarantees

MiniCount)



Approximate Model Counting
o

Design an approximate model counter G:
[ inputs:

CNF formula F

tolerance €

confidence 0

o the count returned by it is within € of the #F with
confidence at least 0

Approximate Model Counting



Approximate Model Counting

Design an approximate model counter G:
[ inputs:

CNF formula F

tolerance €

confidence 0

o the count returned by it is within € of the #F with
confidence at least 0 and scales to real world problems

Scalable Approximate Model Counting

Lies in the 2"d level of Polynomial hierarchy: Z.°



QOur Contribution
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Input Formula: F; Total Solutions: #F

m

Exact counter Poor Scalability
(e.g. sharpSAT, Cachet)




Overview

Our approach
Theoretical results
Experimental results

Where do we go from here?



How do we count?




Explicit Enumeration: Not Scalable

* Enumerate (almost) all
solutions

* Exact Counting!

* Cachet, Relsat, sharpSAT

Not Scalablel



Counting through Partitioning




Counting through Partitioning

Pick a random cell

h

Total # of solutions= #solutions in the cell
* total # of cells



Algorithm in Action

Algorithm
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Algorithm in Action




How to Partition?

How to partition into roughly equal
small cells of solutions without
knowing the distribution of solutions?

Universal Hashing
[Carter-Wegman 1979, Sipser 1983]



Universal Hashing

Hash functions from mapping {0,1}" to {0,1}™ (2" elements to
2™ cells)

Random inputs => All cells are roughly small

Universal hash functions:

Adversarial (any distribution) inputs => All cells are roughly small

Need stronger bounds on range of the size of cells



Higher Universality Stronger Guarantees

H(n,m,r): Family of r-universal hash functions
mapping {0,1}" to {0,1}™ (2" elements to 2™ cells)

Higher the r => Stronger guarantees on range of
size of cells

r-wise universality => Polynomials of degree r-1

Lower universality => lower complexity



Highlights of Our Hashing

Employs XOR-based hash functions instead of
computationally infeasible algebraic hash functions

Uses off-the-shelf SAT solver CryptoMiniSAT
(MiniSAT+XOR support)



Strong Theoretical Results

ApproxMC (CNF: F, tolerance: €,
confidence:0)

Suppose ApproxMC(F,e,0) returns C. Then,

Pr| #F/(1+e)=sC < (1+€)#F]1 =20

ApproxMC runs in time polynomial in log (1 -6)_1,
|F|, €' relative to SAT oracle



Experimental Methodology

Benchmarks (over 200)

Grid networks, DQMR networks, Bayesian networks
Plan recognition, logistics problems

Circuit synthesis

Tolerance: €= (.75, Confidence: 0 = 0.9
Obijectives

Comparison with exact counters (Cachet) & bounding
counters (MiniCount, Hybrid-MBound, SampleCount)
Performance

Quality of bounds



Results: Performance Comparison
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Results: Performance Comparison
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Can Solve a Large Class of Problems
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Large class of problems that lie beyond the exact
counters but can be computed by ApproxMC



Mean Error: Only 4% (allowed: 75%)
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Mean error: 4% — much smaller than the
theoretical guarantee of 75%



Results: Bounding Counters

Range of count from bounding counters = C,-C,
C,: From lower bound counters(MBound /SampleSAT)
C,: From upper bound counters (MiniCount)

Range from ApproxMC: [C/(1+¢), (1+¢)C]

Smaller the range, better the algorithm!



Better Bounds Than Existing Counters
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ApproxMC improved the upper bounds
significantly while also improving the lower bounds



Key Takeaways

Many practical applications can be reduced to
(approximate) model counting

ApproxMC is the first scalable approximate model
counter

Uses easy-to-implement linear hash functions

Major improvements in performance and quality of
bounds compared to existing counters.

Tools is available at



Where do we go from here?

Ongoing work : Probabilistic Inference

Further scaling: Efficient hash functions

Extension to CSP and SMT domains



Discussion
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