
A Scalable Approximate Model Counter

CP 2013

Supratik Chakraborty1, Kuldeep S Meel2, Moshe Y Vardi2

1Indian Institute of Technology Bombay, India
2Department of Computer Science, Rice University

Sept 17, 2013

What is Model Counting?

¨  Given a SAT formula F
¨  RF: Set of all solutions of F
¨  Problem (#SAT): Estimate the number of solutions of

F (#F) i.e., what is the cardinality of RF?
¨  E.g., F = (a v b)
¨  RF = {(0,1), (1,0), (1,1)}
¨  The number of solutions (#F) = 3

#P: The class of counting problems for decision
problems in NP!

2

Practical Applications
3

Exciting range of applications!

¨  Probabilistic reasoning/Bayesian inference

¨  Planning with uncertainty

¨  Multi-agent/ adversarial reasoning
[Roth 96, Sang 04, Bacchus 04, Domshlak 07]

But it is hard!
4

¨  #SAT is #P-complete
¤ Even for counting solutions of 2-CNF SAT

¨  #P is really hard!
¤ Believed to be much harder than NP-complete

problems
¤ PH P#P ✓

The Hardness of Model Counting
5

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 0 20 40 60 80 100 120 140 160 180

Ti
m

e

Benchmarks

Cachet

The Hardness of Model Counting
6

Can we do better?
Approximate counting (with guarantees) suffices for most
of the applications

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 0 20 40 60 80 100 120 140 160 180

Ti
m

e

Benchmarks

Cachet

Prior Work
7

Counters Guarantee Confidence Remarks

Exact counter
(e.g. sharpSAT, Cachet)

 C = #F 1 Poor Scalability

Lower bound counters
(e.g. MBound,
SampleCount)

C ≤ #F δ	

 Very weak
guarantees

Upper bound
counters(e.g.
MiniCount)

C ≥ #F δ	

 Very weak
guarantees

Input Formula: F; Total Solutions: #F; Return Value: C

Approximate Model Counting
8

Design an approximate model counter G:
¨  inputs:

¤ CNF formula F
¤  tolerance ε	

¤  confidence δ	

	

¨  the count returned by it is within ε of the #F with
confidence at least δ	

Approximate Model Counting
9

Design an approximate model counter G:
¨  inputs:

¤ CNF formula F
¤  tolerance ε	

¤  confidence δ	

	

¨  the count returned by it is within ε of the #F with
confidence at least δ and scales to real world problems	

Lies in the 2nd level of Polynomial hierarchy: Σ2
P

Our Contribution
10

Input Formula: F; Total Solutions: #F

Counters Guarantee Confidence Remarks

Exact counter
(e.g. sharpSAT, Cachet)

 C = #F 1 Poor Scalability

ApproxMC #F/(1+ε)≤ C ≤ (1+ ε) #F	

δ	

Scalability +
Strong guarantees

Lower bound counters
(e.g. MBound,
SampleCount)

C ≤ #F δ	

 Very weak
guarantees

Upper bound
counters(e.g.
MiniCount

C ≥ #F δ	

 Very weak
guarantees

Overview
11

¨  Our approach
¨  Theoretical results
¨  Experimental results
¨  Where do we go from here?

How do we count?
12

Explicit Enumeration: Not Scalable
13

Not Scalable!

•  Enumerate (almost) all
solutions

•  Exact Counting!
•  Cachet, Relsat, sharpSAT

Counting through Partitioning
14

Counting through Partitioning
15

Pick a random cell

Total # of solutions= #solutions in the cell
* total # of cells

Algorithm in Action
16

690 710 730 730 731 831 834 ………….…

t

Algorithm

Algorithm in Action
17

Algorithm

690 710 730 730 731 831 834 ………….…

t

Median

How to Partition?

How to partition into roughly equal
small cells of solutions without
knowing the distribution of solutions?

Universal Hashing
[Carter-Wegman 1979, Sipser 1983]

18

Universal Hashing
19

¨  Hash functions from mapping {0,1}n to {0,1}m (2n elements to
2m cells)

¨  Random inputs => All cells are roughly small

¨  Universal hash functions:
¤ Adversarial (any distribution) inputs => All cells are roughly small

¨  Need stronger bounds on range of the size of cells

Higher Universality Stronger Guarantees

¨  H(n,m,r): Family of r-universal hash functions
mapping {0,1}n to {0,1}m (2n elements to 2m cells)

¨  Higher the r => Stronger guarantees on range of
size of cells

¨  r-wise universality => Polynomials of degree r-1

¨  Lower universality => lower complexity

20

Highlights of Our Hashing

¨  Employs XOR-based hash functions instead of
computationally infeasible algebraic hash functions

¨  Uses off-the-shelf SAT solver CryptoMiniSAT

(MiniSAT+XOR support)

21

Strong Theoretical Results
22

ApproxMC (CNF: F, tolerance: ε,
confidence:δ)	

Suppose ApproxMC(F,ε,δ) returns C. Then,

Pr [#F/(1+ε)≤ C ≤ (1+ ε) #F] ≥ δ	

	

ApproxMC runs in time polynomial in log (1-δ)-1,	

|F|, ε-1 relative to SAT oracle

Experimental Methodology
23

¨  Benchmarks (over 200)
¤ Grid networks, DQMR networks, Bayesian networks
¤ Plan recognition, logistics problems
¤ Circuit synthesis

¨  Tolerance: ε= 0.75, Confidence: δ = 0.9
¨  Objectives

¤ Comparison with exact counters (Cachet) & bounding
counters (MiniCount, Hybrid-MBound, SampleCount)
n Performance
n Quality of bounds

Results: Performance Comparison
24

0

10000

20000

30000

40000

50000

60000

70000

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180

ApproxMC
Cachet

Results: Performance Comparison
25

0

10000

20000

30000

40000

50000

60000

70000

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180

ApproxMC
Cachet

Can Solve a Large Class of Problems
26

Large class of problems that lie beyond the exact
counters but can be computed by ApproxMC

0

10000

20000

30000

40000

50000

60000

70000

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180

ApproxMC
Cachet

Mean Error: Only 4% (allowed: 75%)
27

Mean error: 4% – much smaller than the
theoretical guarantee of 75%

1.0E+00

3.2E+01

1.0E+03

3.3E+04

1.0E+06

3.4E+07

1.1E+09

3.4E+10

1.1E+12

3.5E+13

1.1E+15

3.6E+16

0 10 20 30 40 50 60 70 80 90

Cachet*1.75
Cachet/1.75
ApproxMC

Results: Bounding Counters
28

¨  Range of count from bounding counters = C2-C1
¤ C1: From lower bound counters(MBound/SampleSAT)
¤ C2: From upper bound counters (MiniCount)

¨  Range from ApproxMC: [C/(1+ε), (1+ε)C]

¨  Smaller the range, better the algorithm!

Better Bounds Than Existing Counters
29

ApproxMC improved the upper bounds
significantly while also improving the lower bounds

2.6E+02

8.2E+03

2.6E+05

8.4E+06

2.7E+08

8.6E+09

2.7E+11

8.8E+12

2.8E+14

9.0E+15

0 5 10 15 20 25 30 35 40 45 50 55 60

ApproMC

MBound/SampleCount/MiniCount

Key Takeaways
30

¨  Many practical applications can be reduced to
(approximate) model counting

¨  ApproxMC is the first scalable approximate model
counter

¨  Uses easy-to-implement linear hash functions
¨  Major improvements in performance and quality of

bounds compared to existing counters.
¨  Tools is available at

http://www.cs.rice.edu/~kgm2/ModelCounting/

Where do we go from here?
31

¨  Ongoing work : Probabilistic Inference

¨  Further scaling: Efficient hash functions

¨  Extension to CSP and SMT domains

Discussion
32

Thank You for your attention!

Acknowledgments
•  NSF
•  ExCAPE
•  Intel
•  BRNS, India
•  Sun Microsystems
•  Sigma Solutions,Inc

