Generating Random WMC Instances
 An Empirical Analysis with Varying Primal Treewidth

Paulius Dilkas
National University of Singapore, Singapore

CPAIOR 2023

Which Algorithm Is Better? It Depends on the Data

- DQMR
\triangle Grid
- Mastermind
+ Non-binary
® Other binary
* Random Blocks

The runtime data is from Dilkas and Belle (2021): various Bayesian networks encoded using the approach by Darwiche (2002)

The Problem: Weighted Model Counting (WMC)

- A generalisation of propositional model counting (\#SAT)
- Applications:
- graphical models
- probabilistic programming
- neuro-symbolic AI
- WMC algorithms use:
- dynamic programming
- knowledge compilation

Example

$$
\begin{aligned}
& w(x)=0.3, w(\neg x)=0.7 \\
& w(y)=0.2, w(\neg y)=0.8
\end{aligned}
$$

$$
\begin{aligned}
& \text { WMC }(x \vee y)=w(x) w(y)+ \\
& w(x) w(\neg y)+w(\neg x) w(y)=0.44
\end{aligned}
$$

- SAT solvers

(Some of the) WMC Algorithms

- Cachet (Sang et al. 2004)
- a SAT solver with clause learning and component caching
- C2D (Darwiche 2004)
- knowledge compilation to d-DNNF
- D4 (Lagniez and Marquis 2017)
- knowledge compilation to decision-DNNF
- miniC2D (Oztok and Darwiche 2015)
- knowledge compilation to decision sentential decision diagrams
- DPMC (Dudek, Phan and Vardi 2020)
- dynamic programming with algebraic decision diagrams and tree decomposition based planning

Tree Decompositions and Primal Treewidth

Formula in CNF:

$$
\phi=\left(x_{4} \vee \neg x_{3} \vee x_{1}\right) \wedge\left(\neg x_{2} \vee x_{4}\right) \wedge\left(\neg x_{1} \vee x_{2} \vee x_{4}\right)
$$

Tree Decompositions and Primal Treewidth

Formula in CNF:

$$
\phi=\left(x_{4} \vee \neg x_{3} \vee x_{1}\right) \wedge\left(\neg x_{2} \vee x_{4}\right) \wedge\left(\neg x_{1} \vee x_{2} \vee x_{4}\right)
$$

Its primal graph:

Tree Decompositions and Primal Treewidth

Formula in CNF:

$$
\phi=\left(x_{4} \vee \neg x_{3} \vee x_{1}\right) \wedge\left(\neg x_{2} \vee x_{4}\right) \wedge\left(\neg x_{1} \vee x_{2} \vee x_{4}\right)
$$

Its primal graph:

Its minimum-width tree decomposition:

Tree Decompositions and Primal Treewidth

Formula in CNF:

$$
\phi=\left(x_{4} \vee \neg x_{3} \vee x_{1}\right) \wedge\left(\neg x_{2} \vee x_{4}\right) \wedge\left(\neg x_{1} \vee x_{2} \vee x_{4}\right)
$$

Its primal graph:

Its minimum-width tree decomposition:

\therefore the primal treewidth of ϕ is 2

The Parameterised Complexity of WMC Algorithms

Let n be the number of variables and m be the number of clauses.

- Component caching (used in CACHET) is $2^{\mathcal{O}(w)} n^{\mathcal{O}(1)}$, where w is the branchwidth of the underlying hypergraph (Bacchus, Dalmao and Pitassi 2009)
- Branchwidth is within a constant factor of primal treewidth
- C2D is based on an algorithm, which is $\mathcal{O}\left(2^{w} m w\right)$, where w is at most primal treewidth (Darwiche 2001; Darwiche 2004)
- DPMC can be shown to be $\mathcal{O}\left(4^{w} m n\right)$, where w is an upper bound on primal treewidth

From Random SAT to Random WMC

We introduce parameter $\rho \in[0,1]$ that biases the probability distribution towards adding variables that would introduce fewer new edges to the primal graph.
Example partially-filled formula:
$\left(\neg x_{5} \vee x_{2} \vee x_{1}\right) \wedge\left(x_{5} \vee ? \vee\right.$? $)$

Its primal graph:

x_{1}	x_{3}
$/{ }_{3}$	
$x_{2}-x_{5}$	x_{4}

The probability distribution for the next variable

Base probability of each variable being chosen:

$$
\frac{1-\rho}{4} .
$$

Both x_{1} and x_{2} get a bonus probability of $\rho / 2$ for each being the endpoint of one out of the two neighbourhood edges.

The Relationship Between ρ and Primal Treewidth

Peak Hardness w.r.t. Density

Let μ denote the density, i.e., the number of clauses divided by the number of variables.

- Cachet is known to peak at $\mu=1.8$ (Sang et al. 2004)
- Bayardo Jr. and Pehoushek (2000) show some \#SAT algorithms to peak at $\mu=1.2$ and $\mu=1.9$

Peak Hardness w.r.t. Density

Let μ denote the density, i.e., the number of clauses divided by the number of variables.

- Cachet is known to peak at $\mu=1.8$ (Sang et al. 2004)
- Bayardo Jr. and Pehoushek (2000) show some \#SAT algorithms to peak at $\mu=1.2$ and $\mu=1.9$
- In our experiments:
- DPMC peaks at $\mu=2.2$
- all other algorithms peak at $\mu=1.9$

Peak Hardness w.r.t. Density (when $\rho=0$)

Hardness w.r.t. Primal Treewidth (when $\mu=1.9$)

Is The Relationship Exponential?

Let us fit the model $\ln t \sim \alpha w+\beta$, i.e., $t \sim e^{\beta}\left(e^{\alpha}\right)^{w}$, where t is runtime, and w is primal treewidth

Is The Relationship Exponential?

Let us fit the model $\ln t \sim \alpha w+\beta$, i.e., $t \sim e^{\beta}\left(e^{\alpha}\right)^{w}$, where t is runtime, and w is primal treewidth

$4.3-$	0.62	0.33	1	0.94	0.53	
$4-$	0.19	0.49	0	0.97	0.43	
$3.7-$	0.57	0.71	0.83	0.94	0.18	
$3.4-$	0.47	0.85	0.8	0.97	0.53	
$3.1-$	0.88	0.92	0.91	0.91	0.9	
$2.8-$	0.97	0.96	0.98	0.98	0.95	
$2.5-$	0.98	0.98	0.97	1	0.98	
$2.2-$	0.99	0.98	0.98	0.99	0.98	
$1.9-$	0.98	0.99	0.98	0.99	0.98	
$1.6-$	0.99	0.99	0.98	1	0.96	
$1.3-$	0.98	1	0.99	0.99	0.9	
$1-$	0.91	0.99	0.99	0.87	0.79	
	C2D	CACHET	D4	DPMC	MINIC2D	
		R^{2}				
			0.25	0.50	0.75	1.00

Is The Relationship Exponential?

Let us fit the model $\ln t \sim \alpha w+\beta$, i.e., $t \sim e^{\beta}\left(e^{\alpha}\right)^{w}$, where t is runtime, and w is primal treewidth

Does Real Data Confirm Our Observations?

Bonus: How DPMC Reacts to Redundancy in Weights

Let ϵ be the proportion of variables x s.t. $w(x)=w(\neg x)=0.5$

Summary

- This work introduced a random model for WMC instances with a parameter that indirectly controls primal treewidth
- Observations:
- All algorithms scale exponentially w.r.t. primal treewidth
- The running time of DPMC:
- peaks at a higher density
- and scales worse w.r.t. primal treewidth
- Future work:
- A theoretical relationship between ρ and primal treewidth
- Non-k-CNF instances
- Algorithm portfolios for WMC

Generating Random WMC Instances: The Algorithm

```
\phi\leftarrow empty CNF formula;
G}\leftarrow\mathrm{ empty graph;
for }i\leftarrow1\mathrm{ to }m\mathrm{ dos
~\leftarrow\emptyset;
for }j\leftarrow1\mathrm{ to }k\mathrm{ do&
x\leftarrow newVariable(X,G);
V (G)\leftarrow\mathcal{V}(G)\cup{x};
\mathcal{E}(G)\leftarrow\mathcal{E}(G)\cup{{x,y}|y\inX};
X\leftarrowX\cup{x};
\phi\leftarrow\phi\cup{{I/~~\mathcal{U}{x,\negx}|}|x\inX}};
```


How to Pick a Variable

Parameter $\rho \in[0,1]$ biases the probability distribution towards adding variables that would introduce fewer new edges.
Function newVariable (set of variables X, primal graph G):
$N \leftarrow\{e \in \mathcal{E}(G)||e \cap X|=1\} ;$
if $N=\emptyset$ then return $x \operatorname{\sim r} \mathcal{U}\left(\left\{x_{1}, x_{2}, \ldots, x_{n}\right\} \backslash X\right)$;
return

$$
x \sin \left(\left\{x_{1}, x_{2}, \ldots, x_{n}\right\} \backslash X, y \mapsto \frac{1-\rho}{n-|X|}+\rho \frac{|\{z \in X \mid\{y, z\} \in \mathcal{E}(G)\}|}{|N|}\right) ;
$$

