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Which Algorithm Is Better? It Depends on the Data
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The runtime data is from Dilkas and Belle (2021): various Bayesian
networks encoded using the approach by Darwiche (2002)
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The Problem: Weighted Model Counting (WMC)

A generalisation of propositional
model counting (#SAT)

Applications:

graphical models
probabilistic programming
neuro-symbolic AI

WMC algorithms use:

dynamic programming
knowledge compilation
SAT solvers

Example

w(x) = 0.3, w(¬x) = 0.7,
w(y) = 0.2, w(¬y) = 0.8

WMC(x ∨ y) = w(x)w(y) +
w(x)w(¬y) + w(¬x)w(y) = 0.44
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(Some of the) WMC Algorithms

Cachet (Sang et al. 2004)

a SAT solver with clause learning and component caching

c2d (Darwiche 2004)

knowledge compilation to d-DNNF

d4 (Lagniez and Marquis 2017)

knowledge compilation to decision-DNNF

miniC2D (Oztok and Darwiche 2015)

knowledge compilation to decision sentential decision diagrams

DPMC (Dudek, Phan and Vardi 2020)

dynamic programming with algebraic decision diagrams and tree
decomposition based planning
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Tree Decompositions and Primal Treewidth

Formula in CNF:

ϕ = (x4 ∨ ¬x3 ∨ x1) ∧ (¬x2 ∨ x4) ∧ (¬x1 ∨ x2 ∨ x4)

Its primal graph:
x1 x2

x3 x4

Its minimum-width tree
decomposition:

x1 x2
x4

x1 x3
x4

∴ the primal treewidth of ϕ is 2
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The Parameterised Complexity of WMC Algorithms

Let n be the number of variables and m be the number of clauses.

Component caching (used in Cachet) is 2O(w)nO(1), where w is the
branchwidth of the underlying hypergraph (Bacchus, Dalmao and
Pitassi 2009)

Branchwidth is within a constant factor of primal treewidth

c2d is based on an algorithm, which is O(2wmw), where w is at
most primal treewidth (Darwiche 2001; Darwiche 2004)

DPMC can be shown to be O(4wmn), where w is an upper bound
on primal treewidth
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From Random SAT to Random WMC

We introduce parameter ρ ∈ [0, 1] that biases the probability distribution
towards adding variables that would introduce fewer new edges to the
primal graph.

Example partially-filled formula:
(¬x5 ∨ x2 ∨ x1) ∧ (x5 ∨ ? ∨ ?)

Its primal graph:
x1

x2 x5x5

x3

x4

The probability distribution for the next variable

Base probability of each variable being chosen:

1− ρ

4
.

Both x1 and x2 get a bonus probability of ρ/2 for each being the endpoint
of one out of the two neighbourhood edges.

x5
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The Relationship Between ρ and Primal Treewidth
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Peak Hardness w.r.t. Density

Let µ denote the density, i.e., the number of clauses divided by the
number of variables.

Cachet is known to peak at µ = 1.8 (Sang et al. 2004)

Bayardo Jr. and Pehoushek (2000) show some #SAT algorithms to
peak at µ = 1.2 and µ = 1.9

In our experiments:

DPMC peaks at µ = 2.2
all other algorithms peak at µ = 1.9
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Peak Hardness w.r.t. Density (when ρ = 0)
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Hardness w.r.t. Primal Treewidth (when µ = 1.9)
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Is The Relationship Exponential?

Let us fit the model ln t ∼ αw + β, i.e., t ∼ eβ(eα)w , where t is runtime,
and w is primal treewidth
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Does Real Data Confirm Our Observations?
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Bonus: How DPMC Reacts to Redundancy in Weights

Let ϵ be the proportion of variables x s.t. w(x) = w(¬x) = 0.5
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Summary

This work introduced a random model for WMC instances with a
parameter that indirectly controls primal treewidth

Observations:

All algorithms scale exponentially w.r.t. primal treewidth
The running time of DPMC:

peaks at a higher density
and scales worse w.r.t. primal treewidth

Future work:

A theoretical relationship between ρ and primal treewidth
Non-k-CNF instances
Algorithm portfolios for WMC
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Generating Random WMC Instances: The Algorithm

ϕ← empty CNF formula;
G ← empty graph;
for i ← 1 to m do

X ← ∅;
for j ← 1 to k do

x ← newVariable(X , G);
V(G )← V(G ) ∪ { x };
E(G )← E(G ) ∪ { { x , y } | y ∈ X };
X ← X ∪ { x };

ϕ← ϕ ∪ { { l ⇝U{ x ,¬x } | x ∈ X } };

the number of
clauses

clause width

a function to pick
a variable

a (fair) coin flip

Paulius Dilkas (NUS) Generating Random WMC Instances CPAIOR 2023 1 / 2



How to Pick a Variable

Parameter ρ ∈ [0, 1] biases the probability distribution towards adding
variables that would introduce fewer new edges.

Function newVariable(set of variables X , primal graph G):
N ← { e ∈ E(G ) | |e ∩ X | = 1 };
if N = ∅ then return x ⇝U({ x1, x2, . . . , xn } \ X );
return

x ⇝

(
{ x1, x2, . . . , xn } \ X , y 7→ 1−ρ

n−|X | + ρ |{ z∈X |{ y ,z }∈E(G) }|
|N|

)
;
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