Phase Transition Behavior of Cardinality and XOR Constraints

Yash Pote - NUS

Saurabh Joshi - IIT-Hyderabad
Kuldeep S. Meel - (NUS) National University of Singapore

The Problem

Linear Equations (in mod 2)- $O\left(n^{3}\right)$

Instance: A uniformly random matrix $A \in\{0,1\}^{m \times n}$, a random vector $b \in\{0,1\}^{m}$.

Question: Is there a vector $x \in\{0,1\}^{n}$, such that $A x=b$.
$A=\left[\begin{array}{llll}1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0\end{array}\right] \quad b=\left[\begin{array}{l}0 \\ 1\end{array}\right]$
$\mathrm{x}=\left\{\left[\begin{array}{l}0 \\ 1 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{l}1 \\ 0 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 1 \\ 0 \\ 1\end{array}\right],\left[\begin{array}{l}1 \\ 0 \\ 1 \\ 1\end{array}\right]\right\}$

The Problem

CARD-XOR - NP-Complete

Instance: A uniformly random matrix $A \in\{0,1\}^{m \times n}$, a random vector $b \in\{0,1\}^{m}$, and an integer $w>0$.

Question: Is there a vector $x \in\{0,1\}^{n}$, of Hamming weight $\leq w$, such that $A x=b$.
$A=\left[\begin{array}{llll}1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0\end{array}\right] \quad b=\left[\begin{array}{l}0 \\ 1\end{array}\right] \quad w=1$
$\mathrm{x}=\left\{\left[\begin{array}{l}0 \\ 1 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{l}1 \\ 0 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 1 \\ 0 \\ 1\end{array}\right],\left[\begin{array}{l}1 \\ 0 \\ 1 \\ 1\end{array}\right]\right\}$

Where do you find CARD-XOR

Determining the satisfiability of CARD-XOR formulas is of importance in:

- Model Counting
- Discrete Integration
- Approximate Inference

Where do you find CARD-XOR

Determining the satisfiability of CARD-XOR formulas is of importance in:

- Model Counting
- Discrete Integration
- Approximate Inference
- Central problem in coding theory where it is known as Maximum Likelihood Decoding.
- The hardness of breaking the LPN cryptosystem.

Why call it CARD-XOR

We encode the:

- Hamming Weight Constraint as a Cardinality Constraint
- Matrix Equation as a system of XORs

Hence CARD-XOR.

Encoding into CNF

- We have a set of n Boolean variables. $\left\{x_{1}, x_{2} \ldots x_{n}\right\}=\{0,1 \ldots 0\}$
- A cardinality constraint counts the number of variables set to 1 (True) in an assignment.

The Encoding

Cardinality Constraints

A cardinality constraint may be defined over boolean variables by

$$
\sum_{i=1}^{n} x_{i} \triangleright w
$$

- $w \in \mathbb{Z}$
- $\triangleright \in\{\leq, \geq,=\}$

Example: $x_{1}+x_{2}+x_{3}+x_{4} \leq 5$.
Notice that these are just extensions of the usual clause constraints,

- clause $: \geq, w=1$
- cardinality: $\geq, w \geq 1$

XORs

- Linear equations in mod 2 are just XORs.

$$
\text { - } \mathrm{A}=\left[\begin{array}{llll}
1 & 0 & 1 & 0 \\
0 & 1 & 1 & 0
\end{array}\right] \quad \mathrm{x}=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right] \quad \mathrm{b}=\left[\begin{array}{l}
0 \\
1
\end{array}\right]
$$

Is:

$$
\begin{array}{r}
x_{1} \oplus \quad x_{3}=0 \\
x_{2} \oplus x_{3}=1
\end{array}
$$

Putting both encodings together, we get a Cardinality-XOR (CARD-XOR) formula.

The CARD-XOR problem

The CARD-XOR constraint

Instance: \mathbf{m} random XOR constraints, and an integer $w>0$. Question: Is there a vector $x \in\{0,1\}^{n}$ of cardinality $\leq w$, such that it satisfies the XORs?

The CARD-XOR problem

The CARD-XOR constraint

Instance: \mathbf{m} random XOR constraints, and an integer $w>0$.
Question: Is there a vector $x \in\{0,1\}^{n}$ of cardinality $\leq w$, such that it satisfies the XORs?

Now we will look at some properties of these constraints-

What are Phase Transitions

- Sudden sharp transformation from one state to another at a certain point.
- In our case, we see a sudden change in satisfiability on varying the parameters \mathbf{m} (number of XORs) and \mathbf{w} (cardinality).
- This kind of analysis originates from statistical physics where we see similar discontinuities in behavior in large systems when some thermodynamic variable is varied.
Ex. States of matter - Ice, water and vapor.

What are Phase Transitions

- Sudden sharp transformation from one state to another at a certain point.
- In our case, we see a sudden change in satisfiability on varying the parameters \mathbf{m} (number of XORs) and \mathbf{w} (cardinality).
- Behaviour observed in many randomly generated problem instances.
- NP-Complete - k-CNF $(k>2)$, Graph Coloring, CNF-XOR...

What are Phase Transitions

- Sudden sharp transformation from one state to another at a certain point.
- In our case, we see a sudden change in satisfiability on varying the parameters \mathbf{m} (number of XORs) and \mathbf{w} (cardinality).
- Behaviour observed in many randomly generated problem instances.
- NP-Complete - $\mathrm{k}-\mathrm{CNF}(k>2)$, Graph Coloring, CNF-XOR...
- P - XORSAT, Arc-Consistency (AC3)...
- PSPACE - QSAT, Modal K...
- Interestingly the complexity of solving the problem is also seen to peak at the same parameter thresholds, independent of the algorithm used.

Showing the Phase Transition - Proof Sketch

- Step 1: We know the exact number of solutions of a cardinality constraint. $\# F=\sum_{i=0}^{w}\binom{n}{i}$.
- Step 2 : We can estimate what fraction of these solutions also satisfy m random XOR formulas.
It is 2^{-m}.
- Step 3: The Phase transition is where \#solutions goes to 0 w.h.p. It is $\# F \times 2^{-m}$.

Theoretical bounds and Experimental Verification

Insights from the runtime behavior of a State-of-the-Art SAT Solver

Encodings Don't Matter

(1) Adder (Not Arc-Consistent)
(2) BDD
(0) Cardinality Networks

Branching Heuristics Do

Figure: Polarity Caching vs. Always False

Future Exploration

- Extend study to pseudo boolean constraints, which are more general.

Pseudo-Boolean Constraints

A (linear) PB constraint may be defined over boolean variables by

$$
\sum_{i} a_{i} \cdot l_{i} \triangleright d
$$

with

- $a_{i}, d \in \mathbb{Z}$
- $I_{i} \in\left\{x_{i}, \overline{x_{i}}\right\}, x_{i} \in \mathbb{B}$
- $\triangleright \in\{>,<, \leq, \geq,=\}$

Example: $3 x_{1}-10 x_{2}+2 \overline{x_{3}}+x_{4} \leq 5$

Thanks for your attention! Any questions?

CryptoMiniSat

- We use only CryptoMiniSat for evaluation as it is optimized for CNF-XOR formulas, via tightly integrated Gauss-Jordan elimination and SAT solving.
- Alternate methods could be SMT solvers(z3) or PB solvers(OpenWBO, MiniSAT+), but no dedicated support for handling PB+XOR.
- To the best of our knowledge, there do not exist specialized solvers that can handle CNF-PB-XOR formulas efficiently.

