ADHA: Automatic Data layout framework for Heterogeneous Architectures

Abstract

Data layouts play a crucial role in determining the performance of a given application running on a given architecture. Existing parallel programming frameworks for both multicore and heterogeneous systems leave the onus of selecting a data layout to the programmer. Therefore, shifting the burden of data layout selection to optimizing compilers can greatly enhance programmer productivity and application performance. In this work, we introduce ADHA: a two-level hierarchal formulation of the data layout problem for modern heterogeneous architectures. We have created a reference implementation of ADHA in the Heterogeneous Habanero-C (H2C) parallel programming system. ADHA shows significant performance benefits of up to 6.92X compared to manually specified layouts for two benchmark programs running on a CPU+GPU heterogeneous platform.

Publication
In Proceedings of Parallel Architecture and Compilation Techniques (PACT)